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Abstract: This paper presents novel hardware architecture of dynamic memory manager providing memory 

allocation and deallocation operations that are suitable for hard real-time and safety-critical systems due to 

very high determinism of these operations. The proposed memory manager implements Worst-Fit algorithm 

for selection of suitable free block of memory that can be used by the external environment, e.g. CPU. The 

deterministic timing of the memory allocation and deallocation operations is essential for hard real-time 

systems. The proposed memory manager performs these operations in nearly constant time thanks to the 

adoption of hardware-accelerated max queue, which is a data structure that continuously provides the largest 

free block of memory in two clock cycles regardless of actual number or constellation of existing free blocks 

of memory. In order to minimize the overhead caused by implementing the memory management in 

hardware, the max queue was optimized by developing a new sorting architecture, called Rocket-Queue. The 

Rocket-Queue architecture as well as the whole memory manager is described in this paper in detail. The 

memory manager and the Rocket-Queue architecture were verified using simplified version of UVM and 

applying billions of randomly generated instructions as testing inputs. The Rocket-Queue architecture was 

synthesized into Intel FPGA Cyclone V with 100 MHz clock frequency and the results show that it consumes 

from 17,06% to 38,67% less LUTs than the existing architecture, called Systolic Array. The memory manager 

implemented in a form of a coprocessor that provides four custom instructions was synthesized into 28nm 

TSMC HPM technology with 1 GHz clock frequency and 0.9V power supply. The ASIC synthesis results 

show that the Rocket-Queue based memory manager can occupy up to 24,59% smaller chip area than the 

Systolic Array based manager. In terms of total power consumption, the Rocket-Queue based memory 

manager consumes from 15,16% to 42,95% less power. 
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1. Introduction 

Hard real-time (RT) systems belong to a category of cyber-physical and embedded systems that 

contain real-time tasks. Success of hard real-time tasks depends not only on the task results but on 
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time when these tasks are finished too. Improper timing of hard real-time tasks completion (e.g. too 

late completion) generally represents a big failure as if the task results were incorrect, which may 

even cause a complete failure of the whole system. Therefore, it is critically important to consider 

determinism and predictability of hard RT systems when implementing algorithms for such systems. 

Ideally, all operations should be performed in constant or nearly constant time [1, 2]. 

Dynamic memory management algorithms are responsible for dynamic memory allocation and 

deallocation, which is intensively used in software development based on object-oriented 

programming. However, dynamic memory is usually not used in hard real-time systems at all. The 

reason for not using dynamic memory in hard real-time systems is the nondeterministic behavior of 

memory allocation and deallocation algorithms. The nondeterminism is caused by two facts. The first 

one is that a request for memory allocation can be rejected due to insufficient amount of free memory 

or due to memory fragmentation. The second source of nondeterminism is the variable response time 

of memory allocation/deallocation operations. For real-time systems, it is very important to perform 

such operations in constant time. Constant response time is especially important for hard real-time 

systems because they belong to safety-critical systems too. Even if a microprocessor with the highest 

performance was used, there is still no guarantee that the memory management operations meet the 

real-time requirements of the system. Therefore, a dedicated hardware-accelerated memory manager 

that provides implementation of Worst-Fit algorithm for memory allocation and deallocation of 

SRAM-based memory is proposed, which is suitable for usage in hard real-time systems due to its 

constant response time [3-7]. 

The constant latency of all operations within the system, including the Worst-Fit algorithm, is 

very important for more reliable and deterministic memory management in hard real-time systems. 

In such cases, software implementations do not meet these requirements because software 

implemented Worst-Fit algorithm does not operate in constant time [1-13]. 

Since the Worst-Fit algorithm contains data sorting operations, the research presented in this 

paper also includes a design of novel hardware-accelerated data sorting in a form of a min/max 

queue, which consumes less logic resources than existing min/max queues for its implementation. 

This was achieved by developing of a new sorting architecture, which was adopted for 

implementation of Earliest Deadline First (EDF) and Robust Earliest Deadline (RED) algorithms that 

are well-known as task scheduling algorithms suitable for real-time systems [8-32]. The new sorting 

architecture is called Rocket-Queue, which was developed to increase the scalability of data sorting 

realized by hardware in order to be able to sort more items for the same or similar resource cost [33-

35]. 

The structure of this paper is following. Section 2 contains related work on dynamic memory 

management and worst-fit algorithm. Section 3 contains related work on sorting architectures that 

can be used for implementation of min/max queues with constant response time. In Section 4, a novel 

hardware-accelerated memory manager is proposed. In Section 5, new sorting architecture suitable 

for the proposed memory manager, called Rocket-Queue, is presented. Verification of the described 

memory manager is described in Section 6. Section 7 contains synthesis results including tables and 

graphs. These results are afterwards discussed in Section 8. The Section 9 sums up the whole research 
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presented by this paper. The last section describes the limitations of the proposed solution and future 

work. 

2. Related Work on Dynamic Memory Management 

From software point of view, there are two types of memory available to programmers for 

creation of program variables: 

• Static memory – size and amount of program variables must be defined before the program 

is compiled and executed. 

• Dynamic memory – size and amount of program variables can be specified and changed 

anytime during the execution of the program (i.e. run-time). 

Although the dynamic memory is much more flexible, can waste less unused memory and is 

required for instantiation of classes in object-oriented programming, the management of dynamic 

memory is much more complicated when comparing to the static memory [36]. The dynamic memory 

management is responsible for memory allocation and deallocation, whenever it is requested from 

the computer program. From C language, which is relatively popular for implementation of 

embedded and real-time systems, the memory allocation is analogous to the “malloc” function and 

the memory deallocation is known as the “free” function. 

For memory allocation, there exist several algorithms, such as: 

• First-Fit – the algorithm searches for a sufficiently large empty block of memory and selects 

the first block that meets such requirement. The searching always begins from memory address 0 and 

continues forward until the first suitable block is found and selected for memory allocation. 

• Next-Fit – very similar to the First-Fit algorithm. The only difference is that the searching 

does not begin from address 0, but the address of the last selected block is used as a starting point for 

the next searching. 

• Best-Fit – the algorithm selects for allocation the smallest empty block among those blocks 

that are large enough to meet the memory size requirement. In order to selects such a block, the 

algorithm must filter out insufficiently large blocks and after that, the smallest block is selected, which 

requires sorting of these blocks afterwards. 

• Worst-Fit – the largest empty block of memory is always selected for memory allocation. 

Even though this may appear to be a bad approach, whenever the selected block of memory is larger 

than the requested size, this block is split into two blocks: a block with requested size that is used for 

memory allocation and a block with remaining size that remains unused (i.e. free block). This 

algorithm does not require to filter out free blocks of memory with insufficient size before the blocks 

are sorted according to their size. Thus, the algorithm begins with sorting of all free blocks and 

continues with check, whether the selected largest block is sufficiently large. In terms of external 

fragmentation, the worst-fit and best-fit algorithms provide similar results. While best fit is 

statistically a bit more efficient in the case of allocating a mix of very small and very big blocks of 

memory, the worst fit algorithm is statistically a bit more efficient in the case of allocating very similar 

sizes of memory blocks 

• Buddy algorithm – a completely different approach for allocating memory blocks 

dynamically is used in buddy algorithm. This algorithm restricts to provide only blocks of size that 
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is any power of number two (e.g. 2, 4, 8, 16, 32 and 64 bytes). The memory is being recursively divided 

in two halves. The dividing is being performed until the smallest possible memory block with still 

sufficient size is found. Two neighbouring blocks of free memory are combined together only if they 

have the same size. The advantage of buddy algorithm is that it is faster than the previous algorithms. 

The disadvantage is that the memory utilization is lower due to higher internal fragmentation. Even 

though this algorithm is faster, it is still not suitable for real-time systems because its execution time 

cannot be always precisely predicted.  

3. Related Work on Sorting Architectures 

Unlike other memory management algorithms, the Worst-Fit algorithm was identified as a 

suitable candidate for hardware acceleration because the major source of nondeterminism within its 

software implementation is the data sorting that is required to keep track of the largest block among 

all free blocks of memory. Therefore, an important part of the selected memory management 

algorithm is the sorting logic that provides the largest free block in constant time. Since only the 

largest free block is important, the sorting architecture can be implemented in a form of a max queue. 

The max queue is a data structure that provides the item with maximum value and it is possible to 

insert a new item or remove an existing item from the queue. The item removal must be available for 

any item according to its identification number (ID), not only for the max item. This is required in 

order to be able to merge neighbouring free blocks into one larger free block.  

Several architectures for implementation of min/max queues were already developed and can 

be used for dynamic memory management in hard real-time systems. Nevertheless, they suffer from 

scalability issues due to increasing critical path length and resource cost with regards to increasing 

capacity of the queues (i.e. the maximum number of items that can be sorted). The most popular 

architectures include FIFO with MUX Tree [10, 11, 15, 21], Shift Registers [18, 20, 22, 23], DP RAM 

Heapsort [19] and Systolic Array [24-28, 33]. 

The FIFO approach is the least scalable in terms of critical path length due to the complexity of 

the MUX Tree part, which contains too long critical path. It is also very inefficient in terms of chip 

area cost [10, 11, 15, 21]. 

The Shift Register architecture is more efficient approach than the previous one, but the critical 

path length is still not constant with respect to the increasing queue capacity. The architecture is 

composed of homogenous cells, where each cell is able to store one item for sorting. These cells 

communicate with the nearest neighbours. All cells are receiving input data simultaneously from one 

common bus. The more cells the queue contains, the longer the critical path is present [18, 20, 22, 23]. 

DP RAM Heapsort is relatively efficient sorting architecture. However, it is not designed for 

min/max queues and the items in such architecture can be deleted only from the beginning of the 

sorting architecture. Removing items according to their ID is impossible [19]. 

In Systolic Array architecture, the critical path length problem is solved with pipelining 

approach. The first cell is the only one that receives the input data. When a new instruction is inserted 

into the first cell, the instruction is gradually propagated from one cell to another one, with a speed 

of one cell per one clock cycle. This happens until the instruction reaches the last cell. The only 
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disadvantage of the Systolic Array architecture is that it still consumes quite high amount of logic 

resources [24-28, 33]. 

From among the architectures mentioned above, only Systolic Array architecture fulfils the 

requirements of constant and relatively low response time, which is two clock cycles. Furthermore, 

the Systolic Array architecture can remove any item according to its ID, which is an important 

requirement of the worst-fit based memory manager. 

4. Proposed Hardware-Accelerated Memory Manager 

The proposed memory manager is implementing the existing algorithm, worst-fit, in a form of 

a coprocessor unit. The coprocessor provides four custom instructions that can be called from external 

environment. These instructions are: 

• MALLOC – instruction that finds and allocates suitable free block of memory and provides 

an address of the allocated block as the instruction output. Input data consists of required memory 

size only. 

• FREE – instruction that deallocates an allocated block of memory and merges adjacent free 

blocks of memory to one bigger free block of memory. The input for the instruction is only address 

of the block that has to be deallocated. 

• WRITE – standard memory write instruction. This instruction is provided to eliminate 

possible memory access conflicts. 

• READ – standard memory read instruction. The read value is returned one clock cycle later. 

Again, this instruction is provided to eliminate possible memory access conflicts. 

Since the coprocessor does not provide any NOP (no operation) instruction, it can be simply 

enabled/disabled by a 1-bit enable signal. Thus, the selected instruction among the four possible 

instruction opcodes is valid only when the enable signal is activated. 

The whole coprocessor operates in a single clock domain and therefore, it uses only one clock 

and one synchronous reset signal, which is used for putting the coprocessor into initial state. 

The top-level block diagram of worst-fit based dynamic memory manager is depicted in Figure 1. 

The input ports of the manager consist of clock signal clk, reset signal rst, enable signal, signal for 

selection of instruction that is called instr and has bit width of 2 bits, and data_in signal representing 

input data needed for the selected instruction. The output ports are: ready signal that informs whether 

the environment that the manager is ready to accept a new instruction, data_out signal that contains 

output data produced by the executed instruction, signal valid that is used for informing the 

environment when the data_out contains valid data, and error signal that notifies the environment 

about possible errors that may occur. The top-level module of the memory manager consists of three 

components: Control_unit, Max_queue and Memory. 

The Control_unit is the main component responsible for instruction decoding and instruction 

execution. This component processes all inputs and produces all outputs of the manager. It is also 

responsible for control of the remaining two components and therefore, there is a communication 

interface between Control_unit and the other two components. 
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The Memory component is the memory, which has to be managed by the memory manager. In 

our case, the memory is implemented by SRAM because of relatively simple interface of such 

memory type but the proposed solution is in principle applicable to any other memory types as well. 

  

Figure 1. Block Diagram of Worst-Fit Memory Manager 

The Max_queue component represents a data structure with own memory storage that is used 

for storing of information about all existing free blocks of memory that are available in the Memory 

component. The Max_queue is responsible for automatic sorting of the free blocks so that the largest 

free block (i.e. free block with maximum size) is continuously provided as an output of the 

Max_queue component. Due to this, the Control_unit component is always aware of which free block 

of memory is the largest one and where this block is located (i.e. what address belongs to this block). 

Thanks to the Max_queue component, the Control_unit is relatively simple to implement 

because it does not have to deal with finding the largest free block of memory. The Control_unit is 

implemented in a form of a finite-state machine (FSM) that consists of 15 states in total. This state 

machine is described by a state diagram that is shown in Figure 2. Each state is named with a prefix 

“S_”, which implies that the identifier is used for naming a state. The initial state that is provided by 

activating reset signal is called S_RESET. This state is used only for initialization of Memory with a 

header at address 0, which marks that the whole memory consists of only one big free block of 

memory that occupies the whole memory address space. The S_RESET state is always followed by 

S_READY state, which means that the memory manager is ready for accepting and executing a new 

instruction. Thus, the output ready is active. The Control_unit remains in S_READY state until a new 

instruction is provided, which is observed by activating the input enable. Depending on which 

instruction is selected, the next state is decided. If instruction WRITE is used, the state machine 

remains in state S_READY because the WRITE instruction is executed in 1 clock cycle only. If 

instruction READ is used, the Control_unit performs memory read operation and the state S_READY 

is followed by state S_MEM_READ. This state is used for returning the value read from memory and 
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providing it to the output data_out. The S_MEM_READ is always followed by S_READY state. If 

instruction MALLOC is used, the state machine goes to state S_MALLOC and the Control_unit reads 

output from the Max_queue, i.e. the size and address of the largest free block of memory. The size of 

the largest free block is compared to the requested size. If these sizes are equal, then the selected free 

block of memory is allocated as it is and the following state is S_READY. The Control_unit performs 

also removing of the corresponding item from the Max_queue and updating header of the selected 

memory block so that the block is flagged as allocated. However, the requested size of memory is 

usually lower than the available size of the largest free block. In such cases, the S_MALLOC state is 

followed by S_MALLOC_BIGER because the selected free block of memory is split to two smaller 

blocks. One block has exactly the requested size and is allocated, while the second block keeps the 

remaining size and remains free. This state is followed by S_WAIT state, which does not perform any 

operations and is used only to wait for one clock cycle before the state machine returns to the 

S_READY state. The highest number of states is used for execution of the FREE instruction. If the 

FREE instruction is used, the Control_unit starts reading the header of the block identified by address 

provided from input data_in and the S_READY state is followed by S_FREE_BEGIN. In state 

S_FREE_BEGIN, the header provided from Memory is analysed. If the header says that the block is 

already free, then the state machine returns to S_READY state and output error is activated. The 

Control_unit also checks whether the previous block (i.e. the block that is located before the block to 

be freed) is empty or allocated. If the previous block is empty, then the state S_FREE_BEGIN is 

followed by state S_FREE_PREV_EMPTY, otherwise the state S_FREE_PREV_USED is the next state. 

The Control_unit also performs reading of header of the next block located behind the block to be 

freed, which is then analysed in the next state. State S_FREE_PREV_USED checks whether the next 

block behind the selected block is free or allocated. If it is allocated, then the selected block is occupied 

by allocated block from both sides and thus this block is freed without any merging operations. In 

such case, the S_FREE_PREV_USED state is followed by S_WAIT state. The actual freeing is 

performed by flagging the selected block as free by rewriting its header in Memory and by inserting 

the address and size of the freed block to the Max_queue, which automatically keeps the largest free 

block as the output of the queue. However, if the next block behind the selected block for freeing is 

empty, then these two blocks are merged in the next state, called S_FREE_POSTFIX_MERGE. This 

merging is performed by removing the free block from Max_queue, which is achieved by identifying 

the free block according to its address. The S_FREE_POSTFIX_MERGE state is followed by 

S_FREE_END state, which performs insertion of the merged block to the Max_queue. 
For cases when the previous block is free, i.e. when the state machine gets to state 

S_FREE_PREV_FREE, there must be again performed the analysis of the next block behind the block 
selected for deallocation. The Control_unit already performs removing of the previous block from 
the Max_queue too. If the next block is allocated, then the state S_FREE_PREV_FREE moves to state 
S_FREE_PREFIX_MERGE, which is used for merging of the selected block with the previous free 
block into one bigger free block of memory. If the next block behind the selected block is also free, i.e. 
the selected block is wrapped by free blocks from both sides in the memory, then all three blocks are 
merged together into one bigger free block. This is performed by states S_FREE_MERGES_1, 
S_FREE_MERGES_2 and S_FREE_MERGES_3. Such merging realizes sequential removal of the 
previous free block and the next free block from the Max_queue and insertion of the merged free 
block back to the Max_queue during the S_FREE_END state. 
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Figure 2. State Diagram of FSM Implementation of Control_unit 

In terms of timing, the instructions take the following number of clock cycles depending on the 

decisions made by the state machine: 

• MALLOC 

o 1 clock cycle – if no splitting is needed 

o 2 clock cycles – if block splitting is performed 

• FREE 

o 4 clock cycles – if no merging is needed 

o 6 clock cycles – if merging with one neighbouring block is performed (i.e. either the 

previous or the next block only) 
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o 8 clock cycles – if merging with both, i.e. the previous and the next block, are 

performed 

• WRITE – 1 clock cycle 

• READ – 2 clock cycles 

5. Proposed Rocket-Queue Architecture 

Even though the Systolic Array architecture can be used for implementation of the Max_queue, 

the sorting architecture represents a significant part of the whole coprocessor in terms of resource 

cost and power consumption. Systolic Array architecture is not very scalable with regards to the 

number of queue capacity (i.e. maximum number of items that can be stored and sorted). Although 

the functionality and timing attributes of operations implemented in Systolic Array and Rocket-

Queue are the same (i.e. item inserting including the sorting and item removing based on item ID) 

because both architectures perform these operations in 2 clock cycles regardless of the queue capacity, 

these architectures consuming too many resources when higher queue capacity is used [34, 35]. 

One of the most intensively resource consuming parts of min/max queue architectures is a 

comparator that is used for data sorting. Such comparison is done in each cell of Systolic Array and 

in Shift Registers too. Reducing the number of comparators that are used in the queue can 

significantly reduce resource consumption. For this reason, a new architecture for min/max queues 

that is called Rocket-Queue was designed [34, 35]. 

The Rocket-Queue architecture does not use one comparator in each cell unlike the other existing 

min/max queue architectures. This is achieved by sharing the same comparator within a set of cells 

that are organized into one level. Since one comparator is shared by multiple cells, multiplexers are 

needed to access the shared comparator. The architecture consists of several levels and each level is 

composed of several cells that share the same comparator. There are two types of levels: duplicating 

levels and merged levels. The beginning of the queue is formed by duplicating levels that are called 

duplicating because each level below a duplicating level is composed of doubled number of cells. The 

duplication of cells per level is performed only for the first few levels, i.e. the number of duplicating 

levels is finite and parameterized. The levels below the last duplicating level are the merged levels. 

Each merged level keeps the same amount of cells [34, 35].  Figure 3 shows an example of Rocket-

Queue, which consists of three duplicating levels and eleven merged levels. Each cell represents 

memory storage for one item to be sorted and the connections between these nodes represent possible 

movements of items between these nodes, which may occur whenever an item is being added or 

removed. 

There are two drawbacks caused by merging comparators into one shared comparator within a 

level. The first disadvantage is that the multiplexers used for accessing the shared comparator have 

to be introduced, which increases the resource cost and critical path length. Therefore, the amount of 

duplicating levels is limited to five duplicating levels at most. The second disadvantage is the fact 

that the Rocket-Queue architecture must insert a counter into each cell to make decision, in which 

direction to further continue with the instructions that are inserting a new item into the min/max 

queue. Each instruction starts at the first level, which is located at the top of the min/max queue and 

then the instruction moves down, one level per one clock cycle. Only one cell within the same level 
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is actively used by the item insertion. The remove instructions check identification numbers (i.e. ID) 

of all cells within the same level simultaneously [34, 35]. 

  

Figure 3. Rocket-Queue Architecture [34] 

The organization of the Rocket-Queue architecture into levels with interfaces between these 

levels is described by Figure 4. The example depicted in this figure contains one duplicating level and 

two merged levels. It is noticeable that the interface of all levels, regardless of if it is a duplicating 

level or a merged level, is the same with exception of the first level, which provides the capacity of 

the one item only. Therefore, the first level does not need the ADDR input. The ADDR input is used 

to select a cell within the particular level. The first level is directly connected to the interface of Rocket-

Queue too. 

The ITEM_TOP is the input item that is provided for the queue, which has to be either added or 

removed. The ITEM_DOWN has the same purpose as the ITEM_TOP but it is used for the other levels 

below. 

One can notice that all instructions are being propagated indirectly by the levels, thus, every 

level communicates with the nearest neighbours only. 

The ADD_ITEM signals are one-bit control signals, which are used for distinction between item 

inserting and item removing. If ADD_ITEM is logic one, then the provided item (i.e. ITEM_TOP) has 

to be inserted into the queue. If it is logic zero, then the ID of the provided item is used for removing 

of an existing item from the min/max queue. 

The PUSH signal is used to notify whether the provided instruction was already successfully 

executed in another level above the current level. Therefore, the first level has PUSH signal constantly 

driven to logic zero. 
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The ITEM_UP signals are used for providing items up to the higher levels. This is very especially 

important whenever an existing item is removed from the queue. The first level provides an item 

with the minimum/maximum sorting value as the output of the Rocket-Queue. 

  

Figure 4. Block Diagram of Rocket-Queue 

The min/max queue can provide the actual number of items that are present in the queue as well, 

which is handled by the ITEMS_CNT_UP. This is used for “tree balancing” too, i.e. to ensure that the 

new items are inserted into the highest possible level so that no data overflow occurs.  

The lowest level (i.e. level 3 in Figure 4) represents also an end of the whole queue and thus, the 

outputs that would continue further below the queue are not used (i.e. they are opened). Since the 
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last level of the Rocket-Queue architecture has these outputs opened, data loss (i.e. data overflow) 

could occur if the tree balancing based on counting of the items was not used. Also, if number of 

items inserted into the queue is higher than the real capacity of the queue, then some items would be 

lost through the opened outputs of the lowest level, however, this can is caused only if the queue is 

either improperly used or incorrectly configured. An empty item is represented by item ID equal to 

binary zero and either the sorting value of binary zero for max queue configuration or the maximum 

possible binary value for min queue configuration. The empty items are used as an input for the 

Rocket-Queue, whenever no change has to be applied to the queue (i.e. NOP pseudo instruction). 

Since the Rocket-Queue is parametrizable, it is very simple to change the capacity of the Rocket-

Queue architecture. The only thing that must be specified is the number of duplicating levels and the 

number of merged levels. Both types of levels are using the same interface and they can be simply 

cascaded. The critical path length of the whole Rocket-Queue architecture stays constant regardless 

of how many merged levels are used. Only the number of duplicating levels affects the critical path 

length due to the increasing depth of multiplexer trees.  

The pseudo-code below describes the algorithmic behaviour of the top-level of the Rocket-

Queue architecture, whenever a new instruction to the min/max queue is sent. Although the pseudo-

code is written as sequential, all the steps in the while loops are executed in parallel and iterations of 

these while loops use pipelining approach. 
function run_rocket_queue_instruction() 

{ 

  int i = 1; 

  while (i <= DUPLICATING_LEVELS) 

  { 

    fill_inputs_of_level(i); 

    run_duplicating_level(i);     

    update_output_of_level(i); 

    i++; 

  } 

  while (i <= DUPLICATING_LEVELS + MERGED_LEVELS) 

  { 

    fill_inputs_of_level(i); 

    run_merged_level(i); 

    update_output_of_level(i); 

    i++; 

  } 

} 

Figure 5 depicts a block diagram that describes the internal organization of one duplicating level. 

At first, there is several registers used to store items. However, these items share the common 

comparator to compare item values, which is achieved by using of the multiplexer tree to select, 

which two item values are compared. These two values are called A and B for simplicity. In addition 

to this, every item register uses own “ARE IDs EQUAL?” submodule, which serves to compare the 
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item IDs to the ID of the INPUT_TOP item. This way, the item removal instruction executed for all 

items within the level simultaneously. 

  

Figure 5. Block Diagram of One Duplicating Level of the Rocket-Queue Architecture 

The REPLACE ITEM represents a control logic that performs decisions, whether the 

INPUT_TOP item has to replace an existing item that is localized by the address ADDR_IN. 

Replacement occurs if and only if the instruction is the inserting instruction (i.e. ADD_ITEM_IN is 

logic one), the input ITEM_TOP is not an empty item and either the PUSH_IN is logic one or the 

ITEM_TOP contains better sorting value (i.e. it is lower for min queue and higher for max queue) 

than the existing item stored in BANK OF ITEMS that is identified by the ADDR_IN. 

For the killing instruction, ARE IDs EQUAL? modules perform the comparisons of the IDs with 

the input ID. Then results of these comparisons are sent to the ADDRESS ENCODER, which sets up 

an address of the item that has the same ID as the input ID. The address is further sent to the 

MULTIPLEXER TREE to select the item that has to be removed by moving an existing item from the 

level below the current level to the selected item register. Thanks to the MULTIPLEXER TREE, it is 

the COMPARATOR can be shared for all the items within the same level. The COMPARATOR serves 

for comparison of sorting values from items. By sharing one comparator for multiple items, one can 

save logic resources and power consumption despite the fact that the multiplexers were added to 

implement the sharing feature. 

The KILL ITEM module is a combinational logic circuit that performs the decision, when the 

moving of an existing item from below to the current level is executed. 

The NUMBER OF ITEMS REGISTER keeps the number of items for each cell within the actual 

level so that this value is equal to the total number of items of a sub-tree that is represented by the 
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actual cell as the root node. The ADD_ITEM_IN signal is delayed by one clock cycle, which is then 

further propagated as the output ADD_ITEM_OUT.  

Every instruction spends always one clock cycle per level. Thus, pipelining is applied. However, 

every instruction must be followed by one NOP pseudo-instruction. For this reason, the throughput 

of the Rocket-Queue is 2 clock cycles per instruction, which is actually the same throughput as for 

the Systolic Array architecture.  

The ADDRESS EXTENDER block is used to extend the ADDR_IN by one new bit that decides 

the further continuation of the instructions down the levels. The output of the ADDRESS EXTENDER 

propagated to ADDR_OUT. Such address extension is implemented in duplicating levels only.  

The following pseudo-code describes the behavioural functionality of one duplicating level. The 

first part of the pseudo-code is used for item insertion and the second part is represents the item 

removing. 

function run_duplicating_level() 

{ 

  if (ADD_ITEM_IN == 1) 

  { 

    if ((ITEM_TOP.value < my_items[ADDR_IN].value) or (PUSH_IN == 1)) 

    { 

      ITEM_DOWN = ITEM_UP[ADDR_IN]; 

      ITEM_UP[ADDR_IN] = ITEM_TOP; 

      PUSH_OUT = 1; 

    } 

    else 

    { 

      ITEM_DOWN = ITEM_TOP; 

      PUSH_OUT = 0; 

    } 

    number_of_items[ADDR_IN]++; 

    ADDR_OUT = {ADDR_IN, (NUMBER_OF_ITEMS_BOTTOM[{ADDR_IN, 1}] < 

NUMBER_OF_ITEMS_BOTTOM[{ADDR_IN, 0}])}; 

  } 

  else 

  { 

    foreach item item with index i in ITEM_UP do 

    { 

      if ((ITEM_UP[i].ID == ITEM_TOP.ID) or (PUSH_IN == 1)) 

      { 

        bit go_left = (ITEM_BOTTOM[{ADDR_IN, 1}].value < ITEM_BOTTOM[{ADDR_IN, 1}].value); 

        number_of_items[ADDR_IN]--; 

        PUSH_OUT = 1; 

        if (PUSH_IN == 1) 

        { 

 www.aetic.theiaer.org 



AETiC 2019, Vol. 3, No. 4 62 

          ADDR_OUT = {ADDR_IN, go_left}; 

          ITEM_UP[ADDR_IN] = ITEM_BOTTOM[{ADDR_IN, go_left}]; 

        } 

        else 

        { 

          ADDR_OUT = {i, go_left}; 

          ITEM_UP[i] = ITEM_BOTTOM[{i, go_left}]; 

        } 

      } 

    } 

  } 

} 

The Figure 6 shows a block diagram of a merged level. One can notice that it is almost exactly 

the same as the block diagram of duplicating level depicted in Figure 5. The only difference is that 

the number of cells is not duplicated and therefore, the addresses are not extended anymore, which 

causes that the ADDRESS EXTENDER and the items count comparator are removed. The other parts 

of the merged level are exactly identical to the duplicating level.  

  

Figure 6. Block Diagram of One Merged Level of the Rocket-Queue Architecture 

The following pseudo-code describes the behavioural functionality of one merged level. It is 

very similar to the pseudo-code of duplicating levels. Only addresses are not extended in this case 

anymore. 
function run_merged_level() 

{ 
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  if (ADD_ITEM_IN == 1) 

  { 

    if ((ITEM_TOP.value < my_items[ADDR_IN].value) or (PUSH_IN == 1)) 

    { 

      ITEM_DOWN = ITEM_UP[ADDR_IN]; 

      ITEM_UP[ADDR_IN] = ITEM_TOP; 

      PUSH_OUT = 1; 

    } 

    else 

    { 

      ITEM_DOWN = ITEM_TOP; 

      PUSH_OUT = 0; 

    } 

    number_of_items[ADDR_IN]++; 

    ADDR_OUT = ADDR_IN; 

  } 

  else 

  { 

    foreach item with index i in ITEM_UP do 

    { 

      if ((ITEM_UP[i].ID == ITEM_TOP.ID) or (PUSH_IN == 1)) 

      { 

        number_of_items[ADDR_IN]--; 

        PUSH_OUT = 1; 

        if (PUSH_IN == 1) { 

          ADDR_OUT = ADDR_IN; 

          ITEM_UP[ADDR_IN] = ITEM_BOTTOM[ADDR_IN]; 

      } 

        else 

        { 

          ADDR_OUT = i; 

          ITEM_UP[i] = ITEM_BOTTOM[i]; 

        } 

      } 

    } 

  } 

} 

6. Verification of Proposed Solution 

Two versions of memory manager in a form of coprocessor were developed: 

• Memory manager that uses the existing Systolic Array architecture for implementation of the 

Max_queue component. 
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• Memory manager that uses the novel Rocket-Queue architecture for implementation of the 

Max_queue component. 

Both these versions were verified as well as the Rocket-Queue architecture alone. All modules 

were described in SystemVerilog language and verified by simulations in ModelSim. 

In addition to SystemVerilog language a simplified version of Universal Verification 

Methodology [37], also known as UVM, was applied during the verification phase in order to increase 

the strength of the verification and minimize the chance that the designed modules could not working 

as expected. Since the interface of the coprocessor is simple, the UVM was able to be simplified too. 

In our case, one transaction of standard UVM is implemented as a single instruction that is performed 

in two clock cycles. Thus, it is not needed to implement UVM agents to interface the design under 

test (DUT). Only one test procedure that generates constrained random instructions, one predictor 

and one scoreboard were used. The test procedure generates millions of random instructions that 

contain predefined instruction opcode but randomized instruction data. The predictor is a 

verification module that is responsible for prediction of DUT outputs according to the inputs 

provided from the test procedure. The description of the predictor is purely sequential and high-

level, similarly to software. For example, the predictor is using standard SystemVerilog queue 

structure and corresponding sort() function that is used for software implementation of the 

Max_queue. A block diagram of the testbench architecture that is used for verification is depicted in 

Figure 7. 

  

Figure 7. Block Diagram of Simplified UVM Testbench 

More than a million of test iterations, where one such iteration consists of 1024 random 

instructions, were used to verify the designed modules. All instruction types were used during the 

testing. Full capacity of the Memory and Max_queue was used in these tests. Various configuration 

parameters were used for the coprocessor verification, i.e. the Memory depth (D_W) and word length 

(A_W) were changing. 

7. Synthesis Results 

An FPGA synthesis of two sorting architectures for min/max queues, Systolic Array ad Rocket-

Queue architectures, was performed to compare the resource costs of both architectures in terms of 

LUT and registers consumptions. The target device for the synthesis is Intel FPGA Cyclone V 
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(5CSEBA6U23I7) and the target clock frequency is 100 MHz, which is relatively common clock 

frequency for current FPGAs. Two comparisons were performed: one for Adaptive Logic Module 

(ALM) consumption that represents the consumption of LUTs and one for registers consumption. 

These synthesis results are presented in Table 1. The bit width of the sorted data is 60 bits. The queue 

capacity, i.e. number of cells, is varying from 31 to 255 and the item ID width is always the lowest 

possible (e.g. 7 bits for 127 items and 8 bits for 255 items). The number of duplicating levels used in 

the Rocket-Queue architecture is 4. The number of merged levels depends on the total cells count 

(e.g. 7 merged level for 127 items or 15 merged levels for 255 items), where every merged level is 

composed of 16 cells. 
Table 1. FPGA Synthesis Results of Systolic Array and Rocket-Queue architectures 

Cells Count Item ID Width 
Systolic Array 

ALMs 

Systolic Array 

Regs 

Rocket-Queue 

ALMs 

Rocket-Queue 

Regs 

31 5 3.494 4.025 2.898 2.527 

63 6 7.981 8.374 5.991 4.951 

95 7 13.782 12.851 9.256 7.501 

127 7 17.953 17.203 12.496 9.920 

159 8 23.786 21.872 15.307 12.678 

191 8 28.682 26.288 18.011 15.156 

223 8 33389 30704 20850 17648 

255 8 38992 35120 23915 20125 

According to data in Table 2, Figure 8 shows the comparison of ALM and registers consumption 

between Systolic Array architecture and Rocket-Queue architecture. One can notice that the proposed 

Rocket-Queue architecture consumes significantly less resources than Systolic Array for the same 

queue capacity and when the queue is implemented in FPGA.  

  

Figure 8. Relative FPGA Resource Cost Savings 

Another synthesis was performed for the whole memory managers, one that uses Systolic Array 

architecture for implementation of the Max_queue and the second manager that is based on the 

Rocket-Queue architecture. These memory managers were synthesized for ASIC technology, 

specifically 28nm TSMC HPM. Target frequency used for the synthesis is 1 GHz and the voltage level 

used for powering the integrated circuit is 0.9 V. The chip area costs of the Memory itself, Systolic 
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Array based manager without the Memory, and the Rocket-Queue based manager without the 

Memory are presented in Table 2. The A_W parameter defines the bit width of memory addresses, 

which also indirectly specifies the number memory depth (i.e. number of memory words and possible 

addresses). The D_W parameter defines the bit width of one memory word. The chip area cost results 

are presented in μm2. 
Table 2. ASIC Chip Area Costs of Systolic Array based and Rocket-Queue based Memory Managers  

A_W D_W Memory 
Systolic Array 

based manager 

Rocket-Queue 

based manager 

4 16 1.033 725 625 

5 16 2.091 1.260 1.217 

6 16 4.196 2.499 2.566 

7 16 8.415 5.077 5.226 

8 32 33.473 10.959 10.611 

9 32 67.009 23.314 17.582 

According to data in Table 2, Figure 9 shows the comparison of Systolic Array based memory 

manager and Rocket-Queue based memory manager with respect to the chip area cost. The results 

are in μm2.  

  

Figure 9. Relative Chip Area Cost Savings 

The power consumption results are depicted in Table 3 and presented in μW. These results 

represent total power consumption that consists of the leakage power and dynamic power. 

Table 3. ASIC Power Consumptions of Systolic Array based and Rocket-Queue based Memory 
Managers  

A_W D_W Memory 
Systolic Array based 

manager 

Rocket-Queue based 

manager 

4 16 157,34 152,95 129,76 

5 16 319,28 313,50 260,58 

6 16 640,66 660,65 528,92 

7 16 1.283,16 1.451,75 1.202,46 

8 32 5.083,49 3.463,39 2.578,34 

9 32 10.173,68 7.552,76 4.308,83 
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According to data in Table 3, Figure 10 shows the comparison of Systolic Array based memory 

manager and Rocket-Queue based memory manager with respect to the total power consumption. 

The results are in μW.  

  

Figure 10. Relative Power Consumption Savings 

8. Discussion 

The experimental results show that the proposed Rocket-Queue-based dynamic memory 

manager implementing worst-fit algorithm is scalable regardless of whether it is implemented in 

FPGA or ASIC technology. The memory manager performs its memory allocation and memory free 

operations in few clock cycles regardless of memory size and regardless of the number of memory 

blocks that are present in the memory. 

If we compare the proposed hardware implementation of worst-fit algorithm to the existing 

software implementations, it is clear that the performance and determinism are significantly 

improved if the hardware implementation is used. Software implementations require typically 

thousands of CPU clock cycles (or even more) for every memory allocation and every memory free 

operation. In addition to that, this timing can vary a lot due to memory fragmentation, which greatly 

reduces determinism of such a system.  

9. Conclusion 

Novel hardware architecture of the min/max queue, called Rocket-Queue, and hardware 

architecture of worst-fit based dynamic memory manager was presented in this paper. The proposed 

Rocket-Queue architecture is based on existing architectures - Shift Registers, Systolic Array and DP 

RAM Heapsort. The Rocket-Queue architecture provides more efficient sorting of items that can be 

used for implementation of min/max queues. Since max queue is needed for implementation of 

worst-fit algorithm, the worst-fit based memory manager also adopted the proposed Rocket-Queue 

architecture. The designed modules were described with SystemVerilog language and verified by 

UVM and simulations that contained random testing inputs. The presented modules were 

synthesized and tested on Intel FPGA Cyclone V and LUT consumptions were analyzed. In addition 

to this, a synthesis into 28 nm ASIC was performed too. The ASIC synthesis results were compared 

to evaluate chip area cost and power consumption of all presented modules. The comparison shows 

that the proposed Rocket-Queue architecture is significantly more efficient than the Systolic Array 
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architecture and therefore, the Rocket-Queue based memory manager is significantly more efficient 

than the Systolic Array based version too. 

All the presented solutions are especially suitable for hard real-time systems because these 

systems are very sensitive to any sources of non-determinism. Dynamic memory management is 

usually not allowed to be used in hard real-time systems due to the unpredictable time needed for 

allocation and deallocation of memory. The proposed hardware-accelerated memory manager 

eliminates this problem thanks to the fact that the memory allocation and memory free operations 

take constant time with respect to the actual number and position of free blocks of memory. The 

memory allocation operation consumes either 1 or 2 clock cycles. The deallocation consumes either 

4, 6 or 8 clock cycles, depending on how many merges are required. 

One of the main benefits caused by using the proposed memory manager is that real-time 

systems could start using dynamic memory in the embedded software, which would lead to more 

dynamic programming with object-oriented style. Thus, the gap between real-time systems 

programming and ordinary programming could be reduced, resulting in shorter time to market 

(TTM) and lower development costs of real-time systems. Another possible benefit is that memory 

allocation that allocates blocks of memory for operating system tasks (i.e. processes and threads) can 

be accelerated, which would increase the overall system performance and determinism. 

10. Limitations and Future Work 

There are two limitations related to the proposed solution: hardware size and memory 

fragmentation. 

Since the proposed solution is implemented in ASIC or FPGA, in both cases, there is always a 

limitation for the maximum acceptable size of such a hardware, i.e. LUTs in FPGA or chip area in 

ASIC. This limitation affects the maximum number of memory blocks that can be managed using the 

proposed solution, which further limits the maximum allowed size of the memory that can be 

managed. For example, if the memory manager can manage up to 1000 blocks of memory, the 

memory can be split into 2000 blocks of memory at most. If the minimum size of one block is 1 kB, 

then such a memory manager can be used for a 2 MB memory. In order to manage a bigger memory, 

either the minimum size of one block or the size of the memory manager must be increased. 

The second limitation is related to the memory fragmentation, which comes from the 

characteristics of the worst-fit algorithm. This algorithm causes no internal fragmentation, but the 

external fragmentation can be an issue, depending on the actual application and its demands for the 

memory. If the memory is fragmented too much, there is a possibility that the request for memory 

allocation fails, which may be critical for many real-time systems. This issue can be solved by 

performing many simulations and tests to see, if this issue ever happens and by increasing the 

memory size if needed. Additionally, the system can have a plan B that could be based on static 

memory or could request a smaller block of dynamic memory. Another option how to solve memory 

fragmentation is to perform re-fragmentation of the memory periodically, if there is time for it in the 

system. 

The future work will be focused on improving the proposed solution with respect to the 

limitations mentioned above. Furthermore, it is planned to combine the proposed memory manager 
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with task scheduling and ideally, to combine the proposed solution with an existing Linux-based 

operating system. 
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