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Abstract: NoSQL solutions are started to be increasingly used in modern days’ Data Warehouses (DW). 

However, business analysts face challenges when performing On Line Analytical Processing (OLAP) 

queries on these NoSQL systems. The lack of uniform representation of various OLAP operations over 

different types of NoSQL based DWs is one of them.  In addition, deficiency of precise semantics in OLAP 

operations create obstacles to effective query interpretation over distinct types DWs. This paper is aiming 

to deal with aforementioned challenges. Formal and rigorous specification are represented in this paper for 

different kinds of OLAP operators and operations. These precise specifications are capable to analyse 

business queries. Further, the proposed formal specifications are implemented in a document-oriented 

database using a suitable case study. In addition, the proposed approach aids efficient visualization 

techniques of data cubes over NoSQL based DWs.  
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1. Introduction 

Modern Data Warehouses (DW) solutions demand to act more in internet-style than to enforce 

the user to act within predefined structures [1]. Consequently, nowadays DWs need to handle a 

variety of subject areas, diverse data sources and heterogeneous data types like structured, semi-

structured and unstructured. Accordingly, On Line Analytical Processing (OLAP) operations 

require dealing with related business queries based on that irregular information [2]. To manage 

these new characteristics of DWs, business analysts focuses on using of NoSQL databases.  

Flexible deployment, high read/write efficiency as well as scaling to very large data sets – these 

are remarkable features of NoSQL databases [3]. Yet, these databases are categorized based on 

various data models at physical level such as Document Store, Key-Value stores, Graph databases 

and Column-Family store [4]. Each physical level data model has their own approach towards 

handling OLAP algebra. In general, every kind of NoSQL database has a query language of its own. 

For example, Cassandra database has developed Cassandra Query Language (CQL); MongoDB 

query language is used in MongoDB database; Neo4j database has Cypher query language etc. [5]. 

Thus, lack of a common specification of OLAP operations over different NoSQL databases make 

serious problems when DWs using these databases are required to be portable. This challenge 

creates a research question, that how to provide a uniform standard towards OLAP operations for 

distinct types of NoSQL based DWs. 
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 This paper is aiming to address the aforementioned research question. The research 

methodology followed in this paper is described next. Ontology is applied to resolve the challenge. 

It is defined as an explicit specification of shared conceptualization [6]. Axioms are used to enable 

the ontology to provide enriched and formal semantics towards related concepts. OLAP operations 

on different NoSQL based DWs are varied due to both syntactic and semantic differences. These 

variances need to be decreased to get a standard specifications of OLAP operation over disparate 

NoSQL based DWs [7]. An ontology based specification can provide common conceptualization 

towards the elements of DW domain in terms of concepts and related axioms. Thus, syntactic 

differences can be omitted. In this context, the ontology driven conceptual model described in [8] is 

adopted to express a set of OLAP operators and operations formally. Further, semantics differences 

among OLAP operations can also be omitted with the help of ontology. Figure 1 has described the 

overall process. Although, the proposed conceptualization is implemented in a document-oriented 

database, it can also be implemented in other NoSQL based DWs.  

2. Related Work 

In literature, several research works exist related to formalization and implementation of 

OLAP queries on NoSQL based DW. In [9], authors have described ways to implement columnar 

NoSQL DW (CN-DW) and OLAP queries in Hbase. In [10], authors are using OLAP queries to 

know about the popularity in recent tweeter trends. In [11], authors used dice and drill-down 

operation to evaluate the performance on different enterprise scenarios of columnar family. In [12], 

authors have proposed an approach where an ontology serves as superimposed conceptual layer 

between multidimensional data and business analysts. The Ontology based OLAP is proposed 

using UML (Unified Modelling Language) diagram. In [13], a model is described for extracting 

OLAP dimensions from document-oriented SQL database based on parallel similarity techniques. 

In [14], authors have presented a Personalization System based on three interrelated ontologies - 

resources ontology, DW ontology, and domain ontology. They presented these three ontology 

models in UML and in OWL (Web Ontology Language). However, in all these approaches any 

common formal specifications of OLAP operations over distinct NoSQL DWs are not provided. 

Majority of existing works described OLAP operations specific to its physical level 

implementations. However, very few works have focused on formal representation of OLAP 

algebra. Moreover, very few proposals have addressed how to adapt flexible data for OLAP in 

NoSQL based DW systems. In this context, this paper proposed a universal OLAP interface for 

disparate NoSQL based DWs. The proposed uniform OLAP interface is devised based on formal 

semantics of OLAP operators and operations and further implemented in a document-oriented 

NoSQL based DW. 

3. Summarization of Ontology Driven Conceptual Modelling of NoSQL based Data Warehouses 

The conceptual model described in [8] has three main layers namely - Collection (Top-Most 

layer), Family (Intermediate Layer) and Attribute (Bottom-Most Layer). Attribute layer realizes the 

measure and dimension attributes of DWs. Family layer represents fact and dimension hierarchies 

in DW. Further, the data cubes based on facts are mapped towards Collection layer. Attribute layer 

has its construct types - Attribute (AT). Likewise, Family layer has construct type – Family (FA) and 

Collection layer has construct type Collection (col). AT is the group of all possible instances of a data 

item. This can be classified in two types namely- Measure Attribute (MAT) and Dimension Attribute 

Figure 1. Overall process of Proposed OLAP Query Algebra and related implementation in NoSQL based 

DWs 
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(DAT). FA is constructed by grouping several semantically related AT. It can be of two types - Fact 

Family (FF) and Dimension Family (DF).  

FF has single level. A DF can be decomposed into multiple levels to form the dimension 

hierarchies. Col is created from group of FF those are semantically related. Thus, from the top level 

a whole DW can be observed as a group of cols. Cube can be created from FF and realized as a col. 

Further, using different relationships, distinct types of constructs in the conceptual model are 

linked with each other. These relationships are of two kinds –Inter-layer kind and Intra-layer kind. 

Containment and Inverse Containment relationships are included towards both intra-layer kind and 

inter-layer kind relationships category. Further, Association relationship can only be included 

towards Inter-layer kind relationship group. In addition, different relationships of this conceptual 

has distinct properties such as Cardinality, Modality, and Ordering. Figure 2 has illustrated the 

conceptual model described in [8].  

4. Proposed OLAP Algebra for NoSQL based DWs 

Proposed OLAP algebra is classified in two groups. Those groups are OLAP operators and 

OLAP operations. Two operators are included in the first category namely, Select and Aggregate 

operator. On the other hand, five types of operations are included in the second category. These five 

operations used those two operators.  

4.1. Proposed OLAP operators 

Formal representations of two OLAP operators are proposed next. 

(a) Select Operator (𝝅): This operator will extract the dimension and its hierarchy from 

dimension family depending on some predicate p. This can be atomic predicate, denoted as p or it 

can be a composite predicate denoted as 𝑝1 < 𝑜𝑝 > 𝑝2 < 𝑜𝑝 >. . . . < 𝑜𝑝 >  𝑝𝑛  . In the composite 

predicate, <op> acts as a logical operator such as AND, OR etc. The p can be either dimensional 

family (DF) or dimension hierarchy (DFH). The algebraic notation of the operator is  
𝜋𝑝 (𝐷𝐹) = 𝐷𝐹𝑜 

Here DF is the original dimension family on measure and DFo is the output dimension family 

on measure after the restriction. Null predicate operator will return the original DF. Hence 

𝜋∅(𝐷𝐹) = 𝐷𝐹 

(b) Aggregate Operator (𝜶): The aggregate operator will perform the grouping function GF on 

measure attribute (𝑀𝐴𝑇) of the specified set of DFs in a cube C. The GF is the relational aggregation 

function, which will operate on the 𝑀𝐴𝑇  only. These GFs can be SUM, MIN, MAX, AVG, and 

COUNT. The algebraic notation of the aggregate operator is     
𝛼𝐺𝐹(𝑀𝐴𝑇) {𝐷𝐹1 𝑉 𝐷𝐹2 𝑉 𝐷𝐹3 … 𝑉 𝐷𝐹𝑛}(𝐶) 

4.2. Proposed OLAP Operations 

In this section, five OLAP operations are formally specified. 

Figure 2. Conceptual model for NoSQL based data warehouses  
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 (a) Slice operation (sl): The slice operation pick out one specific dimension from an input cube 

and provides a new sub-cube. The algebraic notation for the slice operation is 
𝑠𝑙(𝐶) = 𝛼𝐺𝐹(𝑀𝐴𝑇){𝐷𝐹},𝐶𝑂𝑁(𝐶) 

Here, CON is the condition defined as, 
𝐶𝑂𝑁 = 𝜋𝑝(𝐷𝐹) 

(b) Dice operation (di): The dice operation picks two or more dimensions from an input cube 

and provides a new sub-cube. The algebraic notation for the dice operation is                                           
𝑑𝑖(𝐶) = 𝛼𝐺𝐹(𝑀𝐴𝑇){𝐷𝐹},𝐶𝑂𝑁(𝐶) 

Here, CON is the condition defined as, 
𝐶𝑂𝑁 = 𝜋𝑝1(𝐷𝐹1) < 𝑜𝑝 >  𝜋𝑝2(𝐷𝐹2) … < 𝑜𝑝 > 𝜋𝑝𝑛(𝐷𝐹𝑛) 

(c) Roll-up operation (Rup): The Roll-up operation performs aggregation on a data cube by 

moving down a dimension in the dimensional hierarchy or by adding a new dimension. The 

algebraic notation for the Roll-up operation is                                   
𝑅𝑢𝑝(𝐷𝐹𝑖𝑗 )(𝐶) = 𝛼𝐺𝐹(𝑀𝐴𝑇){𝐷𝐹𝑖(𝑗+1)} (𝐶) 

Here, the roll-up operation going from higher granularity to lower granularity by increasing 

the value of j by 1 for one level roll-up. If roll-up operation is 2 or more than 2 level up, then the 

operation (Rup) is computed in every level and give the result. Here, j and i are used only for 

indexing purpose and have numerical positive integer. i is defined for DF and j is defined for 

dimensional hierarchy.   

(d) Drill-down operation (Ddn): Drill-down is the reverse operation of roll-up. The drill-down 

operation is performed by stepping up in the dimension hierarchy. Thus, it goes to higher 

granularity from lower granularity. The algebraic notation for the drill-down operation is 
𝐷𝑑𝑛(𝐷𝐹𝑖𝑗 )(𝐶) = 𝛼𝐺𝐹(𝑀𝐴𝑇){𝐷𝐹𝑖(𝑗−1)} (𝐶) 

 (e) Pivot operation (pvt): The pivot operation delivers an alternate presentation of a data by 

rotating the data axes in a view. Thus, this operation is also called as rotation. It is about analyzing 

the combination of pair of selected dimension. The algebraic notation for the pivot operation is  
𝑃𝑣𝑡(𝐶) = 𝛼𝐺𝐹(𝑀𝐴𝑇){𝐷𝐹1,𝐷𝐹2}𝑇 (𝐶) 

                                                                   =  𝛼𝐺𝐹(𝑀𝐴𝑇){𝐷𝐹2,𝐷𝐹1}(𝐶)  

5. Illustration of Proposed OLAP Algebra Using a Case Study  

In this section, proposed OLAP algebra is illustrated using a case study described in [8]. The 

case study is based on sales and shipping. Sales of different products can be done in sale branches. 

Branches can be located in multiple locations. Shipping can have multiple shippers who will 

shipped the product from one location to another. 

This case study has two facts – Sales and Shipping. These two facts may have multiple 

dimensions with hierarchy. For example, Sales is associated with four dimensions - Location, Branch, 

Product, and Time. Further, two facts can share their dimensions. Several dimensions have hierarchy 

and specific attributes. For example, dimension Time has hierarchy – Time→Day→Month→Year and 

several attributes such as Time Id, and Time. In addition, each fact are associated with two measures. 

For example, Shipping is associated with measures Units Shipped and Dollars Cost. In some cases, 

attributes of specific dimension either is changed or absent.  

Collections (Cubes created from 
Fact Families) 
FACT FAMILY 1 (SALES) 
FACT FAMILY 2 (SHIPPING) 
SALES(Location, Branch, Product, 
Time, units sold, dollars  sold) 
SHIPPING (Location, Shipper, 
Product, Time, units shipped, 
dollars shipped) 
Location (location_Id, pin code, 
{street}, city_Id) 
City (city_id, city, state_Id) 
State (state_Id, state, country_Id) 
 

Country (country_Id, country) 
Branch (branch_Id, branchName) 
Product (product_Id, product_Name, 
productType_Id) 
ProductType (productType_Id, 
productType_Name) 
Time (time_Id, time, day_Id) 
Day (day_Id, day, month_Id) 
Month (month_Id, month, year_Id) 
Year (year_Id, year) 
Shipper (shipper_Id, shipperName, 
locaton_Id) 

Nomenclature 
  

Collections: In Capitalize and bold; 
Fact Families: in UPPERCASE and italic 
Dimension Families: in Capitalize and italic 
Measure Attributes: in lowercase and italic 
Dimension Attributes: in lowercase 
Optional Construct Type: within {} 
 

Figure 3. Key elements of the specified case study 
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Distinct features of this described case study is irregular. This requires flexible data 

representation. Consequently, NoSQL databases are required to demonstrate these data set in DWs. 

Figure 3 represents the main elements of the case study as described in [8]. Data cubes related to the 

case study can be realized through distinct cols based on different FF. 

Several queries founded on the proposed OLAP algebra are demonstrated next using the 

described case study. 

Query 1: Find the derived dimension of Time for the month “November”. 

Select operator (𝜋) is required to accomplish this query. The formal expression of the query is 

as, 
𝜋𝑇𝑖𝑚𝑒.𝐷𝑎𝑦.𝑀𝑜𝑛𝑡ℎ.𝑚𝑜𝑛𝑡ℎ="𝑁𝑜𝑣𝑒𝑚𝑏𝑒𝑟"(𝑇𝑖𝑚𝑒)  =  𝑇  

It will yield the derived dimension called T, which will be contain the instance of time_id, time, 

day_id, day, month_id, month, year_id, and year related to month=”November”. 

Query 2: The total number of Electronics product type units sold across all of the dimensions 

(Time, Location, Branch, and Shipper). 

Slice operation is required to accomplish this query. The formal expression of the query is as, 
𝑠𝑙(𝐶) = 𝛼𝑆𝑈𝑀(𝑢𝑛𝑖𝑡_𝑠𝑜𝑙𝑑){𝑃𝑟𝑜𝑑𝑢𝑐𝑡.𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑇𝑦𝑝𝑒.𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑇𝑦𝑝𝑒_𝑁𝑎𝑚𝑒},𝐶𝑂𝑁  (𝐶) 

𝐶𝑂𝑁 = (𝜋𝑃𝑟𝑜𝑑𝑢𝑐𝑡.𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑇𝑦𝑝𝑒.𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑇𝑦𝑝𝑒_𝑁𝑎𝑚𝑒(𝑃𝑟𝑜𝑑𝑢𝑐𝑡)) 

Here, slice operation is accomplished for the dimension “Product” based on the criterion 

Product.ProductType.productType_Name  = “Electronics”.   

Query 3: The total unit sold for a particular product type “electronics”, city “Durgapur” and 

month “November”. 

Dice operation is required to accomplish this query. The formal expression of the query is as, 
𝑑𝑖(𝐶) =  𝛼𝑆𝑈𝑀(𝑢𝑛𝑖𝑡𝑠𝑠𝑜𝑙𝑑){𝐴,𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛.𝐶𝑖𝑡𝑦,𝑇𝑖𝑚𝑒.𝐷𝑎𝑦.𝑀𝑜𝑛𝑡ℎ.𝑚𝑜𝑛𝑡ℎ},𝐶𝑂𝑁  (𝐶) 

A={𝑝𝑟𝑜𝑑𝑢𝑐𝑡. 𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑇𝑦𝑝𝑒. 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑇𝑦𝑝𝑒𝑁𝑎𝑚𝑒    
𝐶𝑂𝑁 = ((𝜋𝑃𝑟𝑜𝑑𝑢𝑐𝑡.𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑇𝑦𝑝𝑒.𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑇𝑦𝑝𝑒_𝑁𝑎𝑚𝑒="Electronics"(𝑃𝑟𝑜𝑑𝑢𝑐𝑡) )  

∪ (𝜋𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛.𝐶𝑖𝑡𝑦.𝑐𝑖𝑡𝑦="𝐷𝑢𝑟𝑔𝑎𝑝𝑢𝑟" (𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛) )  

∪ (𝜋𝑇𝑖𝑚𝑒.𝐷𝑎𝑦.𝑀𝑜𝑛𝑡ℎ.𝑚𝑜𝑛𝑡ℎ="𝑁𝑜𝑣𝑒𝑚𝑏𝑒𝑟" (𝑇𝑖𝑚𝑒)))  

The dice operation is performed on the cube using the following selection criteria. The criteria 

involves three dimensions - Product Type Name = Electronics, City = Durgapur, and Month = November. 

Query 4: Find the total unit sold across all product by increasing the aggregation levels of time: 

from Day to Year (Day→Month→Year). 

The roll-up operation is required to accomplish this query.  

First step:         𝑅𝑢𝑝(𝐷𝐹41 )(C) = 𝛼SUM(units_sold){𝐷𝐹4(1+1)} (C) 

= 𝛼SUM(units_sold){𝐷𝐹42} (C) 

Second step:     𝑅𝑢𝑝(𝐷𝐹42 )(C) = 𝛼SUM(units_sold){𝐷𝐹4(2+1)} (C) 

= 𝛼SUM(units_sold){𝐷𝐹43} (C) 

= 𝛼SUM(units_sold){𝑇𝑖𝑚𝑒.𝐷𝑎𝑦.𝑀𝑜𝑛𝑡ℎ.𝑌𝑒𝑎𝑟}  (C) 

Query 5: Find the total units sold across all product by decreasing the aggregation level on 

time: from year to day (Year→Month→Day). 

Drill-down (Ddn) operation is required to accomplish this query.  

First step:         𝐷𝑑𝑛(𝐷𝐹43 )(C) = 𝛼SUM(units_sold){𝐷𝐹4(3−1)} (C) 

= 𝛼SUM(units_sold){𝐷𝐹42} (C) 

Second step:     𝐷𝑑𝑛(𝐷𝐹42 )(C) =    𝛼SUM(units_sold){𝐷𝐹4(2−1)} (C) 

= 𝛼SUM(units_sold){𝐷𝐹41} (C) 

= 𝛼SUM(units_sold){𝑇𝑖𝑚𝑒.𝐷𝑎𝑦}  (C) 

Query 6: Analyze the total units sold by product and location. 

Pivot operation is required to accomplish this query. The formal expression of the query is as, 
𝑃𝑣𝑡(𝐶) = 𝛼𝑆𝑈𝑀(𝑢𝑛𝑖𝑡𝑠_𝑠𝑜𝑙𝑑){𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛,𝑃𝑟𝑜𝑑𝑢𝑐𝑡}𝑇 (𝐶) 

= 𝛼𝑆𝑈𝑀(𝑢𝑛𝑖𝑡𝑠_𝑠𝑜𝑙𝑑){𝑃𝑟𝑜𝑑𝑢𝑐𝑡,𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛} (𝐶) 

 



AETiC 2021, Vol. 5, No. 5 159 

www.aetic.theiaer.org 

6. Implementation of Proposed Algebra  

In this section, proposed OLAP operators and operations are implemented using MongoDB. 

The case study described in section 5 is used to illustrate the implementation. The transformation 

between the conceptual model and MongoDB is described in [8]. Figure 4(a) represents the general 

form of Select operator. Figure 4(b) specifies the general form of Aggregate operator. In these figures, 

Dij is the dimension with related hierarchy. Dimension number is represented through i and j is 

used for changing hierarchy level in a particular ith dimension. The XYZ represents MAT.  

In these general forms, a cube represents a dimension, or a fact with related dimensions or a 

view. A dimension and a fact with related dimensions can be implemented as “Collection” in 

MongoDB [8]. Further, views can be implemented in different ways. The first view is created for a 

cube that includes both facts (shipping and sales) present in the case study. This cube also comprises 

three shared dimensions between these two facts. Figure 5 has illustrated this view. The second 

view is created for a cube that includes the fact shipping and corresponding dimension hierarchy. 

Figure 6 has illustrated this view. Likewise, the third view can be created for a cube that includes 

the fact sales and corresponding dimension hierarchy.  

Next, query examples described in section 5 are implemented based on proposed OLAP 

operators and operations in MongoDB. 

(1). Slice operation (sl):  

Query1: The total number of Electronics product type units sold across all of the dimensions 

(Time, Location, Branch, and Shipper). The implementation of the above query is specified in figure 

7. This query realizes the slice operation of OLAP algebra. In the above query the “salesView” will 

be sliced by the predicate productType_Name=”electronics”. 

  (2). Dice operation (di): 

Query2: The total unit sold for a product type electronics, city Durgapur and month 

“November”. 

The above query is implemented as specified in figure 8. Results of the above query realize 

dice operation by restricting two dimensions of data cube. The salesView will be diced by the 

predicate productType_Name=”electronics” and year=”2017”. 

Figure 4. (a) General Implementation form of Select operator; (b) General Implementation form of 

Aggregate operator 

db.cube.select([{"$match":{"𝐷10 . 𝐷11.   …  . 𝐷1𝑛":”value”,”𝐷20. 𝐷21.   …  . 𝐷2𝑛”:”value”,..., ”𝐷𝑛0. 𝐷𝑛1.   …  . 𝐷𝑛𝑛”:”value” }}]) 

 
(a) 

db.cube.aggregate([{"$group":{_id:{P1:"$ 𝐷10 . 𝐷11.   …  . 𝐷1𝑛",P2:”$ 𝐷20. 𝐷21.   …  . 𝐷2𝑛”, …, 

Pn:”$ 𝐷𝑛0. 𝐷𝑛1.   …  . 𝐷𝑛𝑛”},XYZ:{$GF:"$𝑀𝐴𝑇"}}}]) 

 (b) 

db.createView('dbview','sales', [ {"$lookup":{"from":"shipping","localField":"location_Id---{"$unwind":"$collection5_doc"},                 

{"$lookup":{"from":"branch","localField":"branch_Id----- 

{"$lookup":{"from":"product","localField":"product_Id----- 

{"$lookup":{"from":"time","localField":"time_Id------- 

{"$lookup":{"from":"location","localField-----                                 

{"$lookup":{"from":"shipper","localField":"collection5_doc.shipper_Id","foreignField":"Shipper.shipper_Id","as":"collection6_

doc"}}, {"$unwind":"$collection6_doc"},                        

{"$project":{"dollars_cost":"$collection5_doc.dollars_cost","units_shipped":"$collection5_doc.units_shipped","Shipper":"$colle

ction6_doc.Shipper","Branch------}}]) 

Figure 5. MongoDB based illustration of a view consisting of both sales and shipping fact  

db.createView('shippingView','shipping',[{"$lookup":{"from":"shipper","localField":"shipper_Id","foreignField":"Shipper.shipper

_Id","as":"collection1_doc"}},{"$unwind":"$collection1_doc"}, 

{"$lookup":{"from":"location","localField------ 

{"$lookup":{"from":"product","localField------- 

{"$lookup":{"from":"time","localField":"time_Id----- 

{"$project":{"Shipper":"$collection1_doc.Shipper","Product":"$collection3_doc.Product","Time":"$collection4_doc.Time",---}}]) 

Figure 6. MongoDB based illustration of a view consisting of only shipping fact  

db.salesView.aggregate([{"$match": {"Product.ProductType.productType_Name":"electronics"}},                    

{"$group":{_id:"$Product.ProductType.productType_Name",total_cost:{$sum:"$units_sold"}}}])  

Figure 7. MongoDB based illustration of the Query 1 
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(3). Roll-up operation (Rup):  

Query 3: Find the total unit sold across all product by increasing the aggregation levels of time: 

from Day to Year (Day→Month→Year).  

This query can be executed as systematic as specified in figure 9. The query is realized by Roll-

up operation. According to proposed Roll-up operation, Intermediate Cube IC1 and IC2 are 

generated. IC2 is Roll-up output of IC1, which is Roll-up output of C0. 

(4). Drill-down operation (Ddn): 

Query 4: Find the total units sold across all product by decreasing the aggregation level on 

time: from year to day (Year→Month→Day). This query can be executed as systematic as specified in 

figure 10. The query is realized by Drill-down operation. According to proposed Drill-down 

operation, Intermediate Cube IC1 and IC2 are generated. IC2 is Drill-down output of IC1, which is 

Drill-down output of C0. 

   (5). Pivot operation (pvt): 

 Query 5: Analyze the total dollars sold in respect to product and Time and vise-versa. 

This query realizes the pivot operation. It rotates or transposes the data axes to view the data 

from different perspective. The implementation of the query is represented in figure 11. Figure 11(a) 

has represented total dollars sold in respect to Product and Time. On the other hand, figure 11(b) 

has represented total dollars sold in respect to Time and Product. 

 7. Conclusion 

The lack of uniform representation of OLAP operations over distinct NoSQL based DWs make 

them less portable.  Addressing this challenge, in this paper, an ontology based formal and rigorous 

specification of OLAP operations are proposed. The main contribution of the proposed work is to 

provide uniform precise syntax and semantics towards different OLAP operators and operations. 

These proposed formal specifications are independent of any physical level implementation. Thus, 

proposed operators are able to be applied in distinct type of NoSQL based DWs. Further, the 

db.salesView.aggregate([ {"$match":{"Product.ProductType.productType_Name":"electronics","Time.Day. 

Month.Year.year":2017}}, {"$group":{_id:{productType:"$Product.ProductType.productType_Name",Year:  

"$Time.Day.Month.Year.year"}, total_cost:{$sum:"$units_sold"}}}]) 

Figure 8. MongoDB based illustration of the Query 2   

Figure 10. MongoDB based illustration of the Query 4   

Query C0 

db.salesView.aggregate([{"$group":{_id:{Year:"$Time.Day.Month.monthYear.year"},total_cost:{$sum:"$units_sold"}}}]) 

 
Intermediate Result 1: IC1 

db.salesView.aggregate([{"$group":{_id:{Month:"$Time.Day.Month.month"},total_cost:{$sum:"$units_sold"}}}]) 

Intermediate Result 1: IC2 

db.salesView.aggregate([{"$group":{_id:{Day:"$Time.Day.day"}, total_cost:{$sum:"$units_sold"}}}])  

Figure 9. MongoDB based illustration of the Query 3   

Query C0 

db.salesView.aggregate([{"$group":{_id:{Day:"$Time.Day.day"}, total_cost:{$sum:"$units_sold"}}}])  

Intermediate Result 1: IC1 

db.salesView.aggregate([{"$group":{_id:{Month:"$Time.Day.Month.month"},total_cost:{$sum:"$units_sold"}}])  

Intermediate Result 1: IC2 

db.salesView.aggregate([{"$group":{_id:{Year:"$Time.Day.Month.Year.year"},total_cost:{$sum:"$units_sold"}}}]) 

Figure 11. MongoDB based illustration of the Query 5   

db.salesView.aggregate([{"$group":{_id:{productType:"$Product.ProductType.productType_Name",Year:"$Time.Day.Month.Year.

year"}, total_cost:{$sum:"$dollars_sold"}}}]) 

db.salesView.aggregate([{"$group":{_id:{Year:"$Time.Day.Month.Year.year",productType:"$Product.ProductType.produ

ctType_Name"}, total_cost:{$sum:"$dollars_sold"}}}]) 

(a) 

(b) 
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proposed formal specification is implemented in a document-oriented database MongoDB. 

Moreover, the proposed approach is suitable for web-scale analytical applications. Future work will 

include automated query answering through incorporating prescribed formal semantics of OLAP 

operators in a rule based reasoner. Besides this, another important future work will be automated 

conversion of formal operators towards specific NoSQL based DWs. 
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