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Abstract: Support vector regression (SVR) is well known as a regression or prediction tool under the 

Machine Learning (ML) which preserves all the key features through the training data. Different from 

general prediction, here, we proposed SVR to predict the new approximate solutions after we generated 

some iterates using an iterative method called Lanczos algorithm, one class of Krylov solvers. As we know 

that all Krylov solvers, including Lanczos methods, for solving the high dimensions of systems of linear 

equations (SLEs) problems experiences breakdown which causes the sequence of the iterates is incomplete, 

or the good approximate solution is never reached. By assuming that some iterates exist after the 

breakdown, then we could predict what they are. It is realized by learning the previous iterates generated 

by the Lanczos solvers, which is also called the training data. The SVR is then used to predict the next 

iterate which is expected the sequence now has similar property as the previous one before breaking down. 

Furthermore, we implemented the hybrid SVR-Lanczos (or SVR-L) in the restarting frame work, then it is 

called as hybrid restarting-SVR-L. The idea behind the restarting is that one time running hybrid SVR-L 

cannot obtain a good approximate solution with small residual norm. By taking one iterate which is 

resulted by the hybrid SVR-L, putting it as the initial guess, will give us the better solution. To test our idea 

of prediction of SLEs solutions, we also used the regular regression and compared with the SVR. Numerical 

results are presented and compared between these two predictors. Lastly, we compared our proposed 

method with existing interpolation and extrapolation methods to predict the approximate solution of SLEs. 

The results showed that our restarting SVR-L performed better compared with the regular regression.  

Keywords: SLEs; Machine Learning; SV; Lanczos solvers; hybrid; restarting 

 

1. Introduction 

Machine learning (ML) is the recent technology that is used broadly in many different 

discipline subjects. Literally, ML means that a computer learns the behaviour or pattern of some 

data given [1]. The pattern is then used for the classification or prediction. The given data is called 

the training data, while the prediction is called the output. To realize the process of the 

classification and prediction, ML requires some techniques such as support vector machine (SVM), 

support vector regression (SVR), artificial neural network (ANN), etc [2]. The SVM and SVR differs 

by the purpose of the tools where the first one aims to classify, while the second aims to regress. 

Different from general prediction, in this study, we use SVR to predict an approximate solution of 

the systems of linear equations (SLEs) based on the features of some iterates generated by an 

iterative method, called Lanczos algorithm, which is Krylov based solvers,  

Lanczos-type solvers revised Lanczos method proposed by Cornelius Lanczos [3], by 

introducing the theory of orthogonal polynomials (FOPs), which enables us creating some 

recurrence relationships between the orthogonal polynomials, 𝑃𝑘  [4]. This leads two other classes of 

Krylov iterative methods, called Baheux-types, [4], and Farooq-types, [5]. The differences between 
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the two are that Baheux-types were built by the three-terms recurrence relationships of 

𝑃𝑘 , 𝑃𝑘−1, 𝑃𝑘−2, 𝑃𝑘
(1)

, 𝑃𝑘−1
(1)

, and 𝑃𝑘−2
(1)

, whereas Farooq-types were built from Baheux-types with addition 

𝑃𝑘−3 and 𝑃𝑘−3
(1)

. Definitely, Farooq-types need more computation of the coefficient of 𝑃𝑘 , compared 

with Baheux-types, however, they are more robust to find a good solution [5]. 

In the recent advances of Lanczos-type methods, they focused on dealing with the breakdown, 

for instance restarting Lanczos-types [6], and switching Lanczos-types [7]. Restarting enables us to 

restart the Lanczos solvers whenever they faced breakdown. It is involving the choice of a good 

quality of iterate used to restart with [8]. On the other hand, switching deals with the use of some 

Lanczos-types running alternately whenever the breakdown occurs. Furthermore, [9] introduced a 

model prediction to find an approximate solution of SLEs. The methods involving EIEMLA [10] 

and MEIEMLA [11]. The later one revised the firsts one by the way to interpolate some iterates 

generated by the Lanczos-types. This study will look at this prediction model by using SVR and the 

regular regression. The benefit of using these two prediction tools is that they are more accurate to 

predict compared with the extrapolation method. In fact, SVR is chosen in this study since it is 

suitable for our data set at the moment.  

2. Lanczos-Type Algorithms 

Lanczos-type algorithms are well-known as an effective iterative methods for solving non-

symmetric system 𝐴𝐱 = 𝐛, where 𝐴 ∈ 𝑅𝑛×𝑛, and 𝐱, 𝐛 ∈ 𝐑𝑛. It is a Krylov-based that employs the 

theory of formal orthogonal polynomials by defining the linear function 𝑐which satisfies 𝑐(𝑡𝑖𝑃𝑘(𝑡) =

0), 𝑓𝑜𝑟 𝑖 = 0,1, … 𝑘 − 1 where 𝑘 < 𝑛 and 𝑛 be the dimension of the SLEs, to compute the coefficients 

of polynomials 𝐫𝐤 = 𝑃𝑘𝐫𝟎 [3]. The approximate solution 𝐱𝐤 is computed by using the relation of 𝐱𝐤 =

𝐛 − 𝐫𝐤, without computing the inverse matrix of 𝐴. This leads to several variants of Lanczos 

algorithms, such as Orthores (𝐴4), Orthomin, Orthodir, etc [4], and 𝐴12, 𝐴13/𝐵6 [3].   

Baheux-types have been developed by using the combinations of orthogonal polynomials 

𝑃𝑘 , 𝑃𝑘−1, 𝑃𝑘−2, 𝑃𝑘
(1)

, 𝑃𝑘−1
(1)

,  and 𝑃𝑘−2
(1)

, in the recurrence relationships, [4]. Note here, 𝑃𝑘
(1)

  is called 

adjacent orthogonal polynomials which related to the linear function 𝑐(1) with the similar property 

as function𝑐. Farooq-types were built from Baheux-types with addition 𝑃𝑘−3 and 𝑃𝑘−3
(1)

, [5].  

The only one drawback that typically all Krylov-based solvers has is that they faced the 

breakdown which causes their convergence is unstable. It is commonly caused by the division by 

zero on the Lanczos formula. It is not our authority to discuss further regarding this phenomenon, 

however, our investigation of the model prediction is motivated by the issue of breakdown. 

Particularly, we are interested in looking at the pattern of the iterates generated by the Lanczos 

algorithms. Good study regarding this can be found in [10] and [11], where both articles discuss the 

prediction model by using interpolation and extrapolation methods which the model is based on 

the pattern persistent in the Lanczos vector sequences. This leads at least two methods called 

EIEMLA and MEIEMLA. 

3. EIEMLA and MEIEMLA in the Solution Prediction of SLEs 

One of the strategies to deal with the breakdown in Krylov-based solvers such the Lanczos-

type algorithms, is the predicting solution. Let a Lanczos-type solves a non-symmetric SLEs, 𝐴𝐱 =

𝐛, where 𝐴 ∈ 𝑅𝑛×𝑛, and 𝐱, 𝐛 ∈ 𝐑𝑛 for a fixed number of iterations, say 𝑘, or before the Lanczos 

algorithm faced the breakdown. The sequence S = {𝐱𝟏, 𝐱2 , ⋯ , 𝐱𝑚 , … , 𝐱𝑘} of all iterates can be visualized 

by using parallel coordinate system as follows. 

 
Figure 1. Parallel Coordinate System representation of iterates generated by Orthodir [9] 
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As can be seen from Figure 1, the bold curves are the pattern formed by some iterates with 

small residual norms. The idea then comes up with modeling the iterates by using interpolation 

method, particularly by using PCHIP (piecewise cubic hermite interpolation polynomial). The 

extrapolation method is then needed to get an approximate solution which preserves the properties 

of the sequence S. This procedure was implemented in the method called embedding interpolation 

and extrapolation model in Lanczos-types (EIEMLA) [9].  

In EIEMLA, the interpolation is done over all entries of the first iterate, {𝑥𝟏
(𝟏), 𝑥2

(𝟏), … , 𝑥𝑛
(𝟏)},  

all entries of the second iterate  {𝑥𝟏
(𝟐), 𝑥2

(𝟐), … , 𝑥𝑛
(𝟐)}, etc. MEIEMLA, revised the EIEMLA by 

interpolating all iterates in the sequence at one time. Both EIEMLA and MEIEMLA predicted the 

approximate solution of SLEs within the range of interval [1, 𝑠], where 𝑠 < 𝑘. In this study, we use 

regression methods which allow us to predict out of the range, or [1, 𝑘1], for  𝑘1 >  𝑘 .  The benefit of 

this kind of prediction is that we obtain a new iterate which is not the Krylov basis, particularly 

when it is employed in the restarting frame work, the next approximate solutions would be totally 

different from the Krylov basis. It becomes interesting when similar procedure is implemented in 

other iterative methods.   

4. Support Vector Regression 

Support Vector Regression (SVR) is one of main application in Support Vector Machine (SVM) 

to solve regression problem [12]. Following [13], for our training dataset 

{(𝑥1, 𝑦1), (𝑥2, 𝑦2), … , (𝑥𝑖 , 𝑦𝑖)} ⊂ 𝜒 × 𝑅, where 𝜒 denotes the spaces of the input patterns. The main 

goal of SVR is to find a function that has the largest deviation of the actual obtained targets for all 

the training data. In short, SVR would like to finds a function of that can approximate our output to 

an actual target, with minimum tolerance error of 𝜀. The regression function of  𝑓(𝑥) is described as 

[12]: 

𝑓(𝑥) = 〈𝑤, 𝑥〉 + 𝑏                                                                                                                                     (1) 

where 𝑤 ∈ 𝜒 and  𝑏 ∈ 𝑅. The coefficients of 𝑤 and 𝑏 are estimated by minimizing the risk 

function defined on below equation:  

Minimize 
1

2
‖𝑤2‖ + 𝐶 ∑ (𝜉𝑖 + 𝜉𝑖∗)𝑖

𝑖=1                                                                                                        (2) 

                      𝑦𝑖 − 〈𝑤, 𝑥𝑖〉 − 𝑏 ≤ 𝜀 + 𝜉𝑖 

subject to    〈𝑤, 𝑥𝑖〉 + 𝑏 − 𝑦𝑖 ≤ 𝜀 + 𝜉𝑖∗                                                                                                    (3) 

                       𝜉𝑖 , 𝜉𝑖∗ ≥ 0 

where C is the constant variable that greater than 0, and 𝜉𝑖 , 𝜉𝑖∗ are slack variables to cope with 

otherwise infeasible constraints of the optimization problem.  

5. Hybrid Restarting SVR-Lanczos 

We adopt the procedure of MEIEMLA to predict the approximate solution of SLE after 

collecting a data set of iterates generated by Lanczos-type algorithms. In this case, we employed 

Orthodir algorithm. In general, this study has three stages to achieve our objective, which are 

collecting data set by running Orthodir algorithm, predicting the next point by using the SVR, and 

restarting the hybrid SVR-L based on the predicted data. 

In collecting data set, we fixed a-100 iteration in each time running the Orthodir algorithm, it is 

assumed that the solution is found within 100 iterations (or before the breakdown occurred). Next, 

we collect all the 100 iterates, {𝐱𝟏, 𝐱2 , ⋯ , 𝐱𝑘} , and their corresponding residual norms , 

{‖𝒓𝟏‖, ‖𝒓𝟐‖, … , ‖𝒓𝒌‖ }, hence used them as the training data on the SVR process. On the next stage, we 

used the iterate with the minimum residual norm, {𝐱𝑚}, as our response variable. The idea behind 

this is that our prediction solution would be similar as {𝐱𝑚}, but it is not the Krylov basis so that it 

doesn't bring the breakdown inherent. Up to this step, all the procedures is constricted under the 

hybrid SVR-Lanczos (SVR-L) algorithm. 

One time of running the hybrid SVR-L for solving the system 𝐴𝐱 = 𝐛, the new approximate 

solution as its product, doesn't meet the small residual norm. Therefore, putting the hybrid SVR-L 

in a restarting framework is necessarily done. In practice, for the last stage of the procedures of 
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hybrid restarting-SVR-L, the SVR-L algorithm is repeated for several times until the approximate 

solution met a certain tolerant. There are two benefits of employing our proposed method, first, the 

approximate solution resulted is better than other approximate solutions generated by the Orthodir 

individually, and second, the potential breakdown can be avoided. All of the process of this method 

is described in the Figure 2 below, while the algorithms of hybrid restarting-SVR-L is presented in 

Algorithms 1 and Algorithm 2. 

 
Figure 2. Process flow of hybrid restarting SVR-L 

To justify our prediction of solution is valid, we evaluate the mean absolute error (MAE), mean 

squared error (MSE), root mean squared error (RMSE) and coefficient of determination (R-squared). 

The MAE, MSE, RMSE, and R-squared metrics are mainly used to evaluate the prediction error 

rates and model performance in regression analysis [14-16]. The above metrics can be expressed as:  

𝑀𝐴𝐸 =
1

𝑛
∑ |𝑦𝑖 − 𝑦𝑖̂|

𝑛
𝑖=1                                                                                                                                (4) 

𝑀𝑆𝐸 =
1

𝑛
∑ (𝑦𝑖 − 𝑦𝑖̂)

2𝑛
𝑖=1                                                                                                                            (5) 

𝑅𝑀𝑆𝐸 = √𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑦𝑖 − 𝑦𝑖̂)

2𝑛
𝑖=1 𝑀𝐴𝐸 =

1

𝑛
∑ |𝑦𝑖 − 𝑦𝑖̂|

𝑛
𝑖=1                                                                (6) 

𝑅2 = 1 −
∑(𝑦𝑖−𝑦𝑖̂)2

∑(𝑦𝑖−𝑦𝑖̅̅̅)2                                                                                                                                     (7) 

where the observed value is represented as 𝑦𝑖, the predicted value is shown as 𝑦𝑖̂, and the mean 

of the observed value is represented as  𝑦𝑖̅. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To compare with other regression tool, we also employed the regular regression under the 

polynomial regression. Similar procedures of this can be found in Algorithms 3 and 4. 

 

Algorithm 1 Hybrid SVR-L 

1. Fix the number of iterations to say,  𝑘, and the tolerance,  𝜀, to 1E-13 

2. Initialization. Choose 𝒙𝟎  and 𝐲𝟎. Set 𝐱 = 𝐱𝟎, 𝐫𝟎 = 𝐛 − 𝐀𝐱𝟎, 𝐲𝟎 = 𝐲, and 𝐳𝟎 =  𝐫𝟎 

3. for 𝐤 = 𝟎, 𝟏, 𝟐, …do 

4. 𝐲𝐤 = 𝐀𝐓𝐲𝐤 − 𝟏 

5. 𝐀𝐤+𝟏 =
⟨−𝐲𝐤|𝐫𝐤⟩

⟨𝐲𝐤|𝐀𝐳𝐤⟩
. 

6. 𝐱𝐤+𝟏 = 𝐱𝐤 − 𝐀𝐤+𝟏𝐳𝐤 

7. 𝐫𝐤+𝟏 = 𝐫𝐤 + 𝐀𝐤+𝟏𝐀𝐳𝐤 

8. end for 

9. S = {𝐱𝟏, 𝐱2 , ⋯ , 𝐱𝑚, … , 𝐱𝑘} 

10. for 𝐢 in each row of S do 

11. Collect training data, 𝑿 = (𝟏, 𝟐, 𝟑, … 𝒌) and 𝒀 = (𝑥𝟏,𝒊, 𝑥𝟐,𝒊, 𝑥𝟑,𝒊, … , 𝑥𝒌,𝒊 ) 

12. Choose 𝑘𝑒𝑟𝑛𝑒𝑙 = ′𝑟𝑏𝑓′ and 𝑔𝑎𝑚𝑚𝑎 = 0.1  

13. ŷ𝒊 = predict (𝑿, 𝒀) by using SVR 

14. end for 

15. 𝒔𝒐𝒍𝒑𝒓𝒆𝒅 = 𝒚̂ 

16. 𝒏𝒐𝒓𝒎𝒑𝒓𝒆𝒅 = ‖𝐫𝒑𝒓𝒆𝒅‖ 

17. Stop 
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6. Numerical Results 

We solved different size problems of SLEs 𝐴𝐱 = 𝐛, ranging from dimension 1,000 to 50,000 

with the maximum iteration for each cycle is 100. The matrix 𝐴 of the system is obtained as a result 

in discretizing the PDE equations −
𝜕2

𝜕𝑥2 −
𝜕2

𝜕𝑦2 = 𝑓  in the closed region, whereas the vector 𝐛 is 

formed so that 𝐛 =  𝐴𝐱, where 𝐱 = [1 2 3 … 𝑛]𝑇. The implementation of all algorithms of this study 

was using Python under Windows.  

All of results of SVR-L are presented in Table 1 and Table 2, also the performance of this 

algorithm is visualized in Fig. 3.  We can see from Table 1 that there is improvement of residual 

Algorithm 2 Hybrid Restarting-SVR-L 

1. Fix the number of iterations to, say, 𝑘 and the tolerance, 𝜖, to 1E-13 

2. Run hybrid SVR-L for k iterations 

3. while    𝒏𝒐𝒓𝒎𝒑𝒓𝒆𝒅 ≥  𝛜    do  

4. Initialize the algorithm with 

𝐱 =  𝒔𝒐𝒍𝑝𝑟𝑒𝑑, 

𝐲 = 𝐛 − 𝐀𝐱. 

5. end while 

6. Take predicted solution  𝐲̂ as the approximate solution 

7. Stop 

Algorithm 3 Hybrid Regression-L 

1. Fix the number of iterations to say,  𝑘, and the tolerance,  𝜀, to 1E-13 

2. Initialization. Choose 𝒙𝟎  and 𝐲𝟎. Set 𝐱 = 𝐱𝟎, 𝐫𝟎 = 𝐛 − 𝐀𝐱𝟎, 𝐲𝟎 = 𝐲, and 𝐳𝟎 =  𝐫𝟎 

3. for 𝐤 = 𝟎, 𝟏, 𝟐, …do 

4. 𝐲𝐤 = 𝐀𝐓𝐲𝐤 − 𝟏 

5. 𝐀𝐤+𝟏 =
⟨−𝐲𝐤|𝐫𝐤⟩

⟨𝐲𝐤|𝐀𝐳𝐤⟩
. 

6. 𝐱𝐤+𝟏 = 𝐱𝐤 − 𝐀𝐤+𝟏𝐳𝐤 

7. 𝐫𝐤+𝟏 = 𝐫𝐤 + 𝐀𝐤+𝟏𝐀𝐳𝐤 

8. end for 

9. S = {𝐱𝟏, 𝐱2 , ⋯ , 𝐱𝑚, … , 𝐱𝑘} 

10. for 𝐢 in each row of S do 

11. Set 𝑿 = (𝟏, 𝟐, 𝟑, … 𝒌)  as predictor variables and 𝒀 = (𝑥𝟏,𝒊, 𝑥𝟐,𝒊, 𝑥𝟑,𝒊, … , 𝑥𝒌,𝒊 ) as 

response variable 

12. Create linear regression model and fit it using polynomial features 

with 𝑑𝑒𝑔𝑟𝑒𝑒 = 4 

13. ŷ𝒊 = predict (𝑿, 𝒀) by using polynomial regression 

14. end for 

15. 𝒔𝒐𝒍𝒑𝒓𝒆𝒅 = 𝒚̂ 

16. 𝒏𝒐𝒓𝒎𝒑𝒓𝒆𝒅 = ‖𝐫𝒑𝒓𝒆𝒅‖ 

17. Stop 

Algorithm 4 Hybrid Restarting-Regression-L 
1. Fix the number of iterations to say,  𝑘,  and the tolerance, 𝜀,to 1E-13. 

2. Run hybrid Regression-L for  𝑘 iterations  

3. while 𝒏𝒐𝒓𝒎𝒎𝒊𝒏 ≥   𝜀 do  

4. Initialize the algorithm with 

𝐱 =  𝒔𝒐𝒍𝒎𝒊𝒏, 

𝐲 = 𝒃 − 𝐀𝐱. 

5. end while 

6. Take predicted solution 𝒚̂ as the approximate solution 

7. Stop. 
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norm when the Lanczos is combined with SVR. Moreover, when the hybrid SVR-L was put in the 

restarting framework, the performance of the algorithm improved significantly (see Table 2).  

Table 1. Performance of Hybrid SVR-L to improve the individual Lanczos/Orthodir 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
(a) Dim 1000 

 
(b) Dim 8000 

 
(c) Dim 40000 

 
(d) Dim 50000 

Figure 3. Performance of Hybrid Restarting-SVR-L of several dimensions 

Table 2. The validation of prediction of the solution generated by Hybrid Restarting- SVR-L 
Dim (𝒏) ||𝒓𝒑𝒓𝒆𝒅𝒊𝒄𝒕𝒊𝒐𝒏|| Time (s) Cycles MAE MSE RMSE 

1000 8.92E-12 4.844s 7 1.68E-13 8.98E-26 3.00E-13 

2000 9.81E-12 24.624s 21 5.67E-14 2.98E-26 1.73E-13 

3000 9.86E-12 55.870s 33 1.75E-14 1.58E-26 1.26E-13 

4000 8.48E-12 56.148s 25 4.62E-15 4.29E-27 6.55E-14 

5000 3.00E-11 138.711s 50 5.55E-14 5.50E-26 2.34E-13 

6000 0.00E+00 88.288s 26 0.00E+00 0.00E+00 0.00E+00 

7000 0.00E+00 91.864s 23 0.00E+00 0.00E+00 0.00E+00 

8000 9.49E-12 89.009s 19 2.22E-15 2.07E-27 4.55E-14 

9000 5.30E-12 107.993s 21 2.02E-16 1.84E-28 1.36E-14 

Dim (𝒏) 
Lanczos 

‖𝒓𝒌‖ 

Hybrid SVR-L 

||𝒓𝒑𝒓𝒆𝒅𝒊𝒄𝒕𝒊𝒐𝒏|| 

1000 1.72E+04 8.28E+01 

2000 5.48E+03 2.69E+02 

3000 7.64E+03 2.89E+03 

4000 7.11E+03 1.68E+03 

5000 3.48E+04 1.79E+03 

6000 2.76E+03 2.36E+03 

7000 8.50E+04 1.33E+03 

8000 2.18E+03 6.23E+03 

9000 4.04E+05 2.58E+03 

10000 3.06E+05 5.48E+03 

20000 4.75E+05 3.97E+03 

30000 1.91E+04 3.76E+03 

40000 3.53E+10 8.27E+03 

50000 2.35E+04 7.27E+03 
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10000 2.39E-11 151.214s 27 1.28E-14 1.19E-26 1.09E-13 

20000 7.50E-12 399.096s 35 9.10E-17 1.65E-28 1.29E-14 

30000 0.00E+00 446.153s 26 7.40E-21 1.64E-36 1.28E-18 

40000 0.00E+00 753.027s 33 0.00E+00 0.00E+00 0.00E+00 

50000 0.00E+00 742.043s 26 2.22E-21 2.47E-37 4.97E-19 

Similar story as the performance of hybrid regression-L (Table 3) and hybrid restarting-

regression-L (Table 4). We can see here that the hybrid SVR-L and its hybrid restarting-SVR-L 

version performed better than the hybrid regression-Lanczos. 

Table 3. Performance of Hybrid Regression-Lanczos to improve the individual Lanczos/Orthodir 

 

 

Table 4. The validation of prediction of the solution generated by Hybrid Restarting- Regression-Lanczos 
Dim (𝒏) ||𝒓𝒑𝒓𝒆𝒅𝒊𝒄𝒕𝒊𝒐𝒏|| Time (s) Cycles MAE MSE RMSE 

1000 1.74E-12 17.713s 17 1.14E-15 1.29E-28 1.14E-14 

2000 2.05E-12 102.717s 55 6.25E-16 8.40E-29 9.17E-15 

3000 1.87E-12 102.543s 36 3.79E-16 6.89E-29 8.30E-15 

4000 1.56E-10 103.564s 27 5.49E-13 1.34E-24 1.16E-12 

5000 2.33E-10 102.643s 28 6.18E-13 9.18E-25 9.58E-13 

6000 2.90E-10 119.308s 24 6.30E-13 1.19E-24 1.09E-12 

7000 2.71E-10 158.179s 26 6.52E-13 1.60E-24 1.27E-12 

8000 2.60E-10 370.497s 57 5.65E-13 1.70E-24 1.30E-12 

9000 2.73E-10 279.691s 34 4.14E-13 1.22E-24 1.10E-12 

10000 2.78E-10 283.855s 33 2.68E-13 7.34E-25 8.57E-13 

20000 2.46E-10 632.926s 44 5.97E-14 3.81E-25 6.18E-13 

30000 2.56E-10 870.312s 42 2.48E-13 1.94E-25 4.40E-13 

40000 2.03E-10 1096.711s 41 1.56E-14 6.71E-26 2.59E-13 

50000 1.98E-10 1714.899 55 8.00E-15 5.59E-026 2.37E-13 

In this section, we also present the comparison of the hybrid restarting SVR-L and hybrid 

restarting regression-Lanczos 

We also compared both of our algorithms with previous study that we adopted, which is 

MEIEMLA. The comparison of these three algorithms can be seen in Fig. 5. We can see here that the 

hybrid restarting-SVR-L performed the best in the term of residual norm, where restarting 

MEIEMLA needs more cycles to obtain a good prediction, compared with the two hybrids. 

Dim (𝒏) 
Lanczos 

‖𝒓𝒌‖ 

Regression-Orthodir 

||𝒓𝒑𝒓𝒆𝒅𝒊𝒄𝒕𝒊𝒐𝒏|| 

1000 1.72E+04 7.62E+01 

2000 5.48E+03 2.19E+02 

3000 7.64E+03 7.09E+03 

4000 7.11E+03 2.90E+03 

5000 3.48E+04 6.88E+03 

6000 2.76E+03 1.31E+04 

7000 8.50E+04 1.79E+03 

8000 2.18E+03 1.02E+04 

9000 4.04E+05 8.81E+03 

10000 3.06E+05 1.94E+04 

20000 4.75E+05 2.09E+05 

30000 1.91E+04 1.07E+04 

40000 3.53E+10 6.37E+05 

50000 2.35E+04 2.61E+03 
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(a) Dim 1000 

 
(b) Dim 8000 

 
(c) Dim 40000 

 
(d) Dim 50000 

Figure 4. Performance of Hybrid Restarting-Regression-L of several dimensions 

 
(a) Dim 4000 

 
(b) Dim 40000 

Figure 5. Comparison Results 

7. Discussion 

According to Tables 1 and 2, overall, the proposed methods of hybrid SVR-L and hybrid 

Regression-L were able to reduce the residual norms of the approximate solutions generated by the 

original Lanczos method. The significant results appeared, for instance, when solving 1000 

dimensions of SLEs, where the hybrid SVR-L reduced from 1.72E+04 to 8.28E+01. Other SLE problems 

such as dimensions 20000, 30000, and 40000 were also reduced significantly. This situation, however, did not 

occur when using hybrid Regression-L. 

The use of restarting framework to speed up the convergence of the hybrids, worked properly. 

It can be seen in Tables 3 and 4 for restarting hybrid SVR-L and restarting hybrid Regression-L, 

respectively. These results were compared with the restarting MEIEMLA. Overall, the prediction of 

approximate solutions generated by both hybrid restarting-SVR-L and hybrid restarting-regression-L 

algorithms, were more accurate than the one produced by restarting MEIEMLA. This is shown by the 

residual norms which were smaller than the residual norms generated by restarting MEIMLA. This 

comparison is clearly visible in Figure 5.  

However, from our observations, some drawbacks found for the high dimension problems, 

namely that the larger the dimensions that we calculate, the longer computational time to reach our 
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desired tolerance error , since we undergo slow decline of error . These are appeared in Figure 3 (d) 

and Figure 4 (c) and (d). One way to improve this issue is, perhaps, to reduce the dimension of our 

SLEs which can help shorten the computational time. 

8. Conclusion 

We have implemented the hybrid restarting-SVR-L in predicting the new approximate solution 

of SLEs. This innovation showed a good performance of reducing the residual norms when the 

individual Lanczos/Orthodir was used to solve the SLE problems. We have also implemented the 

hybrid restarting-regression-L with the same purposes. Based on the numerical results, overall, the 

hybrid restarting-SVR-L was more accurate in obtaining the approximate solutions, compared with 

hybrid restarting-regression-L and MEIEMLA. It also showed the best performance in term of 

efficiency; it consistently took the shortest time on all problems. 
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