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Abstract: Object detection in remote sensing images (RSIs) is crucial in Earth observation. However, current 

approaches often overlook key characteristics of RSIs, resulting in models that fail to balance accuracy and 

computational efficiency. To the authors’ knowledge, these limitations stem from the inherent scarcity and 

complexity of RSI samples, which cannot be fully resolved by solely modifying the model architecture. To address 

these challenges, we propose QACL-Net, an object detection method built on the Faster R-CNN framework, which 

significantly enhances the performance of CNN-based detectors for RSI recognition while maintaining fast 

inference speeds. QACL-Net incorporates several innovative techniques. Firstly, we introduce the quantitative 

augmentation (QA) strategy to address RSI sample scarcity. Secondly, we propose the equal-quadrate mosaic 

(EQM) algorithm to improve the effectiveness of the traditional mosaic technique for RSI detection. Thirdly, we 

implement the competitive learning (CL) strategy to resolve the problem of redundant feature fusion in the feature 

pyramid network. Crucially, the proposed enhancement techniques are integrated into three plug-and-play 

modules. To evaluate the proposed method, we develop two variants of QACL-Net by utilizing an EfficientNet-B0 

and EfficientNet-B3 backbone model for the detector architecture, respectively. Extensive experiments on two 

widely used RSI datasets demonstrate that QACL-Net outperforms 31 advanced methods since 2022 on the 

DIOR20 dataset. Specifically, QACL-Net-B3 achieves a 6.9% improvement in accuracy on the challenging DIOR20 

dataset. Additionally, QACL-Net-B3 reduces model size by 33% and increases inference speed by 17% compared to 

the baseline model. In summary, our work highlights the significant impact of RSI sample scarcity, noisy 

backgrounds, and feature fusion redundancy on object detection performance. Theoretically, our approach can be 

seamlessly integrated with other detection models, as the QA, EQM, and CL modules require only minimal 

modifications to the model structure.   

Keywords: Competitive Learning; Equal-Quadrate Mosaic; QACL-Net; Quantitative Augmentation; Remote 

Sensing Object Detection 
 

1. Introduction 

Remote sensing images (RSIs) have become indispensable across various fields, offering unique 

advantages in areas such as Earth observation [1], environmental monitoring [2], agriculture [3], and 

aquaculture [4]. Object detection methods in RSIs play a crucial role by automating the identification of 

objects as well as determining their location and quantity [5–6]. Currently, deep learning approaches are 
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widely adopted for object detection due to their ability to manage the complexity and diversity of data 

found in RSIs [7-8].   

Object detection in RSIs generally relies on frameworks originally developed for natural images. 

These frameworks are typically categorized into two types based on their detection algorithms: one-stage 

and two-stage methods. One-stage methods, such as You Only Look Once (YOLO), predict object classes 

and bounding boxes simultaneously, prioritizing speed and making them well-suited for real-time 

applications [9]. In contrast, two-stage algorithms, like Faster R-CNN, first generate region proposals (i.e., 

likely object locations) and then classify these regions and refine the bounding boxes, achieving higher 

accuracy but with slower processing times [10]. Both types employ a backbone model for feature 

extraction and a detector neck for feature refinement, aiding in the prediction of object categories and 

locations. However, unlike natural images, RSIs contain numerous small, densely packed objects within 

complex backgrounds, which challenges the detection effectiveness in background differentiation and 

small-object precision. Consequently, researchers have proposed various optimization approaches to 

improve the accuracy of these frameworks in RSI detection. 

YOLO models often focus on enhancing speed and reducing complexity [11]. Techniques include 

lightweight backbone models and efficient multi-scale processing modifications, which improve detection 

accuracy without compromising processing time [12]. On the other hand, Faster R-CNN optimizes target 

precision through adjustments in region proposal networks [13] and the introduction of attention 

mechanisms [14], which refine object localization in complex or high-density settings. Both frameworks 

benefit from adaptive loss functions and spatial pooling [15-16], which improve detection speed and 

accuracy under challenging remote sensing samples. However, RSIs are characterized by noisy 

backgrounds and multi-scale objects [17]. Additionally, the scarcity of RSI samples is common due to the 

specialized focus of remote sensing research [18]. Therefore, RSI recognition often requires tailored 

training strategies distinct from those used for natural images, ensuring superior model performance [19–

20].    

To address the unique challenges in RSIs, researchers have developed various optimization strategies 

for the Feature Pyramid Network (FPN), emphasizing its key capabilities in feature fusion [21]. Many 

approaches focus on multi-scale feature selection, using adaptive layers to enhance the detector’s ability to 

identify small and large objects across diverse scales [22]. Alternatively, some methods employ gating 

functions to filter out irrelevant information, thereby improving the model’s accuracy by emphasizing 

crucial features [23]. Additionally, related studies suggest that multi-stage integration modules and 

adaptive fusion techniques effectively blend information from different layers, managing complex image 

textures and varying object scales [24]. Similarly, attention-based mechanisms are embedded within FPNs 

to refine spatial relationships [25], further improving object localization, particularly for targets with 

irregular shapes and orientations. However, some inherent characteristics of RSIs are due to the data 

distribution, like variability and scarcity across samples. Therefore, optimization strategies focusing solely 

on model structure are insufficient to overcome the challenges in RSI recognition [26–27].    

To address the challenges of variability and scarcity in RSIs, researchers have introduced various 

data augmentation (DA) strategies to enhance model robustness by increasing dataset diversity and 

mitigating overfitting [28]. Studies indicate that spatial transformations, such as rotation, flipping, and 

cropping, effectively simulate diverse object orientations, improving model generalization, particularly for 

small or uniquely shaped objects [29]. Likewise, techniques like MixUp and Mosaic combine multiple 

image samples to create synthetic images, introducing novel contexts and complex backgrounds that 

enhance model adaptability to varying scene compositions [30]. Additionally, noise perturbation and 

color adjustments replicate environmental changes, such as lighting and atmospheric variations, further 

enhancing model resilience across diverse conditions [31]. Synthetic data generation through generative 

adversarial networks also supports augmentation in data-scarce scenarios by expanding dataset volume 

without incurring the costs of manual labeling [32]. However, to the authors’ knowledge, previous studies 

still failed to address several challenges inherent to RSI samples, leading to suboptimal model 

performance. 

Remote sensing imagery often suffers from low quality due to varying imaging conditions and 

processes. As a result, the RSI samples shown in Figure 1 exhibit inconsistent image quality, with only the 

left samples in each category meeting acceptable standards. This inherent challenge complicates the 
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differentiation between inter-class and intra-class samples. To develop robust models, current DA 

strategies typically degrade high-quality samples to simulate low-quality ones, aiming to replicate the 

diverse imaging conditions encountered in remote sensing. However, these qualitative DA methods, 

which are typically used for natural images, apply this transformation to all training samples throughout 

the training process.  

 
Figure 1. Imaging Quality Variations in RSIs 

In contrast, real-world RSI samples are usually pre-screened by algorithms before being released, 

ensuring that most of the dataset maintains acceptable image quality. As a result, applying these 

qualitative DA techniques to RSI detection introduces a significant discrepancy between the training data 

and real-world applications, where the majority of samples retain good imaging quality. This 

misalignment leads to suboptimal performance of RSI detectors, as the training data distribution created 

by these DA methods differs from that of real-world data. 

 
Figure 2. Fragmented Object Representations in RSIs through Mosaic DA 

DA techniques such as MixUp and Mosaic are effective for natural images, which typically contain 

larger objects. However, remote sensing imagery often comprises numerous smaller objects of varying 

sizes within a scene. Figure 2 illustrates how the Mosaic technique generates synthetic images by 

randomly selecting four patches from training samples. This process often leads to fragmented 

representations of objects because RSI samples typically include many fine-grained elements. 

Consequently, models trained on these fragmented representations struggle to accurately identify and 

locate target objects, thereby increasing the likelihood of prediction errors in object detection. 

Similarly, the MixUp technique faces challenges when applied to RSI samples. MixUp generates 

synthetic samples by linearly interpolating between two images, blending their pixel values. However, 

this process poses difficulties for RSIs, as blending pixel values from different RSI samples can result in 

unnatural transitions between objects, leading to unrealistic representations that do not reflect real-world 

scenarios. This synthetic algorithm confuses the model during training, as the generated samples fail to 

accurately represent the true variation in object appearances or spatial relationships typical in RSIs. 

Consequently, training with such mixed samples may degrade the model's ability to accurately detect and 

classify objects in remote sensing tasks. 

Multi-layer feature fusion enhances a model's capacity to detect objects of varying sizes. However, 

the complex backgrounds in RSI samples often introduce substantial redundant information during the 

fusion process. As illustrated in Figure 3, when feature fusion includes a road background with two 
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vehicles (highlighted by blue rectangles), it provides useful context for the detector to identify the vehicles. 

In contrast, a grassland background (depicted by a red rectangle) complicates detection, as vehicles are 

more frequently seen on roads than on grasslands. Current FPN-based methods have not fully addressed 

this challenge, leading to ineffective feature fusion with unnecessary background information, which can 

degrade the model's performance. 

 
Figure 3. The Impact of Different Backgrounds on Feature Fusion 

In this paper, we introduce QACL-Net, a Faster R-CNN-based detection framework designed to 

address key challenges in RSI detection by integrating several innovative techniques. First, we propose a 

quantitative augmentation (QA) strategy that regulates the frequency of image transformations in a 

flexible framework to address limitations in existing augmentation approaches. Second, we develop an 

equal-quadrate mosaic (EQM) algorithm to generate synthetic training samples while maintaining the 

integrity of object shapes within RSIs. Third, we implement a competitive learning (CL) strategy for 

feature fusion in FPNs, achieving notable improvements in detection accuracy with minimal impact on 

inference speed. Additionally, we replace the ResNet-50 backbone in the Faster R-CNN model with the 

EfficientNet, optimizing the model's size and efficiency. Specifically, we incorporate the QA strategy, 

EQM algorithm, and CL strategy as three plug-and-play modules, referred to as the QA module, EQM 

module, and CL module, respectively, to enhance the proposed method's adaptability and transferability.  

We evaluate the performance of the proposed QACL-Net on two RSI datasets. The experimental 

results demonstrate that QACL-Net outperforms 39 methods since 2022 on the challenging DIOR20 

dataset. Notably, QACL-Net achieves a 6.9% improvement in accuracy on the DIOR20 dataset, 

significantly surpassing other top-performing models. Furthermore, QACL-Net achieves a 33% reduction 

in model size and a 17% increase in inference speed compared to the baseline model. The key 

contributions of this paper are as follows:   

(1) We introduce the QA strategy and the EQM algorithm to enhance the object detection 

performance of the Faster R-CNN model in RSIs. These novel techniques effectively address inherent 

challenges in RSIs, leading to significant improvements in detection accuracy.  

(2) We propose the CL strategy to mitigate the issue of redundant feature fusion in current detection 

frameworks. This strategy results in substantial improvements in object detection accuracy in RSIs with 

minimal computational overhead.  

(3) We implement the QA strategy, EQM algorithm, and CL strategy as plug-and-play modules, 

offering the potential for integration with other existing detection methods. Additionally, the QACL-Net-

B3 model demonstrates superior performance in terms of both accuracy and inference speed, providing a 

practical solution for object detection in RSIs.     
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2. Related Works 

2.1. Strategies for Optimizing Detector Frameworks 

Since 2022, advances in RSI object detection have highlighted the challenges posed by noisy 

backgrounds and varying object scales. To address these issues, MFICDet [11] employs a dual strategy 

approach. It introduces a positive and negative feature guidance module to suppress background noise 

and a global feature information complementary module to enhance detection in complex environments. 

ProEnDet [13] introduces an anchor-free detector that utilizes the weighted bidirectional FPN and 

probability enhancement techniques to improve the distinction between foreground and background 

objects. HA-MHGEN [14] stands out with its hybrid attention-driven, multi-stream hierarchical graph 

network. It captures both spatial and semantic relationships using self-attention mechanisms and graph 

embedding. SHDet [15] enhances feature representation across spatial hierarchies by incorporating a 

spatial hierarchy perception component and applying hard sample metric learning, thereby reducing 

intra-class variability and boosting detection performance. MOD-Net [16] tackles scale variations and 

background complexity by integrating multi-receptive field features and relation-connected attention into 

the Faster R-CNN framework, resulting in more robust detection. Collectively, these methods 

demonstrate substantial performance gains over their baseline models. Nevertheless, their optimization 

strategies are still one-dimensional, exposing inherent limitations.  

Researchers have proposed several strategies to enhance their detector frameworks. For example, 

MCFCE-Net [33] integrates a multi-scale contextual feature enhancement module, employing recursive 

convolution and attention mechanisms to capture scale-dependent information and reduce background 

noise. TBNet [34] introduces two specialized modules to address the detection of small and weak objects. 

Its texture-aware module captures texture details through pixel correlations, while the boundary-aware 

fusion module highlights object edges to improve spatial localization. In contrast, TRD [35] combines 

CNNs with a modified Transformer architecture to leverage both local and global feature representations. 

By using a multi-layer Transformer, TRD addresses the limitations of CNNs in handling long-range 

dependencies by aggregating global spatial features. SAENet [36] targets weakly supervised object 

detection through self-supervised and adversarial learning techniques. Its adversarial dropout activation 

block dynamically obscures discriminative object parts to highlight more comprehensive instance features. 

GLC-Net [37] employs a dual attention mechanism in an end-to-end architecture for multi-size object 

detection. Its MobileNet backbone extracts multi-layer features, while the two-stage deep feature fusion 

module combines feature maps to enhance the representation of small targets. Additionally, GLNet [38] 

addresses the issue of varying target scales by integrating global context cues from a multi-scale 

perception module with local spatial correlations. SGFTHR [39] focuses on detecting small and dense 

objects by introducing a structure-guided feature transform module to preserve critical low-level spatial 

and structural information. Overall, these seven approaches primarily concentrate on model structures 

but lack effective measures to address the unique data distribution in RSIs.    

2.2. Enhancements in FPN Optimization 

Recent advancements have increasingly leveraged FPNs to address the inherent challenges posed by 

complex backgrounds and varying object scales in RSIs. For instance, Sw-LBPN [12] introduces a 

simplified bidirectional FPN to facilitate multi-scale feature aggregation. It utilizes skip connections to 

preserve and reuse information from small-scale objects. MSA R-CNN [21] introduces an adaptive 

dynamic inner lateral connection module to reduce information loss in the FPN and a distributed 

lightweight attention module for refined feature information processing. SIFA-Net [22] proposed two 

novel modules. Its adaptive feature extraction module integrates local and global features to 

accommodate the varying angles of small targets, and the tri-directional feature fusion module enhances 

the quality of feature maps through a weighted fusion mechanism. Additionally, Bayes R-CNN [23] 

employs a multi-level feature fusion module to minimize information loss in the FPN and a Bayesian 

distributed lightweight attention module to facilitate background classification for a detailed 

interpretation of detected objects. ABNet [24] introduces an adaptive FPN to mitigate the impact of 

complex backgrounds on foreground objects. It develops a context enhancement module to leverage 
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abundant semantic information for multi-scale object detection. Moreover, TransMIN [25] integrates 

cross-view feature interactions in the FPN, enhancing edge information and mitigating background 

interference by capturing correlations between reference features (such as spatial edge priors and channel 

statistics). Collectively, these approaches highlight a growing trend toward integrating multi-scale 

features. However, they still lack effective measures to address the efficacy of feature fusion.   

Other studies have focused on the intelligent fusion of local and global information for optimizing 

the classic FPN. For instance, REFIPN [40] employs rotation equivariance convolution and a lightweight 

image pyramid module. It enhances small-scale object detection by effectively extracting features across 

various scales and orientations. GCF-Net [41] introduces an aware FPN for cleaner feature extraction and 

a group assignment strategy for more effective label distribution based on sample overlap. This approach 

addresses feature interference and label assignment issues in RSI samples. Similarly, RFEB-Net [42] 

presents a multi-scale detection framework. It incorporates a receptive field expansion block to enhance 

context capture and modifies the classic FPN with dilated convolutions to preserve resolution while 

maintaining a large receptive field. MSNet [43] introduces a partial and point-wise convolution extraction 

module for simultaneous spatial and channel feature extraction and a local and global information fusion 

module to integrate texture and semantic information. Additionally, MSNet contains a local and global 

information fusion pyramid that enhances small object detection by densely connecting multi-scale 

feature maps. MSFP-Net [44] proposes a content-aware feature upsampling and feature enhancement 

module for efficient feature map fusion across stages, addressing small-scale target blurring and large-

scale variations in RSI samples. Lastly, GPANet [45] introduces a gated path aggregate network, which 

incorporates path enhancement and information filtering to optimize feature fusion by assigning 

importance to hierarchical convolutional layers.  

Overall, these methodologies demonstrate a concerted effort to improve feature representation 

through sophisticated feature integration techniques. Nonetheless, the redundant feature fusion in the 

FPN has not been addressed.    

2.3. Strategies for RSI Augmentation 

Recent research has proposed various strategies to augment training datasets in RSI detection. For 

instance, CGDDT-Net [28] introduces a count-guided deep descriptor transforming algorithm, which 

automatically generates coarse object bounding boxes from class labels and per-class object counts. The 

TSPGC [29] approach proposes an augmentation technique called shape-prior-based generated content, 

addressing the limitations of RSI samples' quantity and quality. It generates shape data independently of 

existing training datasets and enhances its robustness through stylization. The double augmentation [30] 

method presents a two-step framework for ship detection in RSIs. It consists of a front augmentation step 

that employs a modal recognition network to mitigate differences during training and a back 

augmentation verification step that utilizes batch augmentation. Additionally, P2P-Net [31] implements 

an augmentation strategy for solid waste detection, utilizing a modified pix2pix model to improve the 

detail and overall quality of the generated images. MAGAN [32] integrates a framework for automatically 

generating content-rich synthetic images with ground-truth annotations. It involves rendering 3D CAD 

models to create two widely distributed synthetic aircraft image datasets and enhancing image quality 

through a multi-scale attention module. Moreover, MBS-Net [46] introduces an improved augmentation 

strategy to manage multi-scale and directional variations. It incorporates a multi-branch stacking module 

to capture deep target features effectively and employs a dual-channel attention mechanism to enhance 

discriminative feature acquisition in complex scenes. RFA-Net [47] incorporates a sequential 

augmentation module to enhance unlabeled data, a sparse feature reconstruction module to strengthen 

instance-level features for better alignment, and a pseudo-label generation module to supervise the 

unlabeled target domain.  

Overall, these augmentation strategies mark a significant advancement in addressing the limitations 

associated with insufficient training data in RSI detection. However, they have not sufficiently resolved 

the issue of biased data distribution stemming from qualitative augmentation and often necessitate 

multiple steps for sample processing. Consequently, the accuracy outcomes of these methods may not be 

competitive.  
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3. Methodologies 

3.1. Detection Framework 

Figure 4 illustrates the detection framework of the proposed QACL-Net, which incorporates a Faster 

R-CNN architecture with an embedded FPN. As shown on the left side of the figure, the QA and EQM 

modules process RSI samples sequentially; the resulting transformed data flow is then input into the 

EfficientNet backbone for feature extraction. Subsequently, as indicated at the top of the figure, the FPN 

utilizes feature maps from the convolutional stages 2, 3, 4, and 5 of the backbone to perform feature fusion. 

Notably, the CL module oversees this fusion process in a competitive manner. Finally, the region proposal 

network generates category predictions and bounding boxes for target objects.   

 
Figure 4. Detection Framework of the Proposed QACL-Net  

The QA and EQM modules are active only during the training phase and are removed during 

inference. Furthermore, QACL-Net introduces only a few structural optimizations to the FPN. Therefore, 

the proposed method introduces negligible additional computational costs compared to the original 

Faster R-CNN framework.    

3.2. Propose QA Module 

Figure 5 illustrates the proposed QA module, which consists of a sequential arrangement of six QA 

operators. Each QA operator, as depicted at the top of Figure 5, comprises three main components: a 

probability sampler, a logic branch, and a transform function. For each input RSI sample, these operators 

either produce a transformed sample or retain the original sample based on a chance determined by the 

probability sampler. 

Specifically, let 𝑃 and 𝑇ℎ denote the output chance from the probability sampler and the probability 

threshold within the logic branch, respectively. Let 𝐹 and �̃� represent the input and output features of QA 

operators, while 𝑓  denotes the transform function embedded within the operator. The operational 

mechanism of a QA operator can be described as follows:  

�̃� = {
𝑓(𝐹), 𝑖𝑓 𝑃 ≤ 𝑇ℎ
𝐹     , 𝑖𝑓 𝑃 > 𝑇ℎ

 (1) 

The six QA operators use distinct transform functions, which are color jitter, horizontal flip, vertical 

flip, grayscale conversion, auto contrast, and Gaussian blur. According to ablation experimental results 

presented in Section 4.3, the probability threshold values for the QA operators are 0.3 for the grayscale 

and auto contrast and 0.5 for the others. The notations of input and output features of the QA module, 
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along with the transform function, are consistent with those defined in Equation (1). The overall workflow 

of the QA module can be summarized as follows:   

�̃�𝐴 = 𝑓𝐴(𝐹) (2) 

�̃�𝐵 = 𝑓𝐵(�̃�𝐴) (3) 

�̃�𝐶 = 𝑓𝐶(�̃�𝐵) (4) 

�̃�𝐷 = 𝑓𝐷(�̃�𝐶) (5) 

�̃�𝐸 = 𝑓𝐸(�̃�𝐷) (6) 

�̃� = 𝑓𝐹(�̃�𝐸) (7) 

 
Figure 5. Architecture of the Proposed QA Module 

3.3. Propose EQM Module 

Algorithm 1 presents the pseudocode for the proposed EQM. In detail, line 3 initializes a variable for 

a 2× image, which has dimensions twice the height and width of the current input RSI sample. In line 4, 

three images are randomly selected from the sample batch, along with their corresponding bounding 

boxes. Line 5 copies the features from the current sample and the three selected images into the 2× image 

variable. Subsequently, lines 6 and 7 resize the 2× image variable to match the original dimensions of the 

input RSI sample, adjusting the bounding boxes accordingly. Finally, lines 8 to 10 generate synthetic 

mosaic samples, ensuring that the bounding boxes are updated to reflect the new images. 

Algorithm 1. Procedures of the proposed EQM 
Input: A batch of RSI samples, denoted as 𝑥𝑖, with corresponding bounding boxes 𝑏𝑖. The height and width of the 

RSI sample are represented as 𝐻 and 𝑊, respectively. 

Output: A batch of transformed RSI samples, denoted as �̃�𝑖, with corresponding bounding boxes �̃�𝑖. 

1: Initialize an empty list, denoted as xList.  

2: For iteration = 1 to 𝑙𝑒𝑛𝑔𝑡ℎ(𝑥𝑖) Do 

3:  

Initialize a temp image variable, denoted as x𝑇, with its channel number, height, and width at: 

3, H×2, and W×2, respectively. 

Initialize an empty bounding box list, denoted as bList. 

4:  
Randomly sampling three images from the sample batch, denoted as x𝐴, x𝐵, x𝐶, respectively. 

Obtain the bounding boxes of x𝐴, x𝐵, x𝐶, denoted as b𝐴, b𝐵, b𝐶, respectively.  

5:  

x𝑇[:, 0:H, 0:W] = 𝑥𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛[:, :, :] 

x𝑇[:, 0:H, W:2W] = x𝐴[:, :, :] 

x𝑇[:, H:2H, 0:W] = x𝐵[:, :, :] 

x𝑇[:, H:2H, W:2W] = x𝐶[:, :, :] 

Fix the coordinates in b𝐴, b𝐵, and b𝐶 accordingly. 
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6:  
Resize the height and width of x𝑇 to H and W. 

Fix the coordinates in x𝑇  accordingly.  

7:  
Add x𝑇 into xList. 

Add 𝑏𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛, bA, 𝑏𝐵, and 𝑏𝐶 into bList. 

8: End For 

9: �̃�𝑖 = xLis, �̃�𝑖 = bList 

10: Return �̃�𝑖 and �̃�𝑖 

Additionally, the EQM module incorporates a probability sampler that regulates the frequency of 

mosaic sample generation, following the method outlined in Equation (1). The probability threshold for 

the EQM module is set to 0.1, as higher probability values during training lead to suboptimal detection 

accuracy. 

3.4. Propose CL Module 

The CL structure is inspired by the human cognitive model, wherein two distinct teams work 

collaboratively to solve a common task, utilizing competition to enhance the final solution. Figure 6 

illustrates the architecture of the proposed CL module, which consists of two main components. The 

feature fusion module within the FPN, depicted on the left side of Figure 6, integrates the CL module as 

its initial layer, followed by two additional convolutional blocks. In contrast, the feature fusion layer in a 

standard FPN architecture only includes the two convolutional blocks shown in Figure 6. 

 
Figure 6. Structure of the Proposed CL Module 

The CL module, detailed on the right side of Figure 6, introduces an innovative structure. Specifically, 

it divides the input features along the channel dimension into four groups of equal size. The first and 

second groups are processed separately by 5×5 and 7×7 convolutional layers, respectively, followed by 

activation functions. In contrast, the third and fourth groups remain unaltered. Finally, the split features 

are recombined along the channel dimension, preserving the original number of channels in the output 

features as in the input to the CL module. 

3.5. Backbone Models 

We assess the effectiveness of the proposed QACL-Net by developing two detectors, each utilizing a 

different EfficientNet variant as the backbone: EfficientNet-B0 and EfficientNet-B3. EfficientNets, as 

described in [48], are well-known CNN models that incorporate channel attention mechanisms. In general, 

EfficientNet-B0 and EfficientNet-B3 demonstrate superior performance compared to ResNet-50, especially 

in handling RSI classification tasks while maintaining compact model sizes. 
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3.6. Dataset and Division 

We employed two datasets, NWPU10 and DIOR20 [7], to evaluate the performance of the proposed 

QACL-Net. Table 1 provides a detailed summary of the dataset characteristics and the training ratio (TR) 

configurations. NWPU10 is a relatively small-scale dataset, and previous studies have often used a TR 

exceeding 50% to maintain accuracy. On the other hand, DIOR20 is considerably more challenging due to 

its larger size. DIOR20 has been pre-divided into training, testing, and validation subsets since its release, 

with proportions of 25%, 25%, and 50%, respectively. For our experiments, we use the original training 

subset, corresponding to a 25% TR of DIOR20, for model training. We then evaluate and report the 

performance using the original validation subset, which represents 50% of the DIOR20 for testing.   

Table 1. Summary of Detection Dataset and Training Ratio Settings 

Dataset Category Number Total Images Image Size Total Instances TRs Testing Ratios 

NWPU10 10 800 500~1100 × 500~1100 (varied) 3,775 50% 50% 

DIOR20 20 23,463 800 × 800 (fixed) 192,472 25% 50% 

3.7. Performance Evaluation Metrics 

We used mean average precision (mAP) as the evaluation metric for detection performance. In this 

context, ‘TP’ denotes the number of correctly identified positive instances, ‘FP’ refers to the number of 

negative instances mistakenly classified as positive by the model, and ‘FN’ indicates the number of 

positive instances incorrectly classified as negative. Precision (P) and recall (R) are defined as follows: 

𝑃 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (8) 

𝑅 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
   (9) 

IoU is a measure of the overlap between the ground truth bounding boxes (represented as 𝐵𝑇) and 

the predicted bounding boxes (represented as 𝐵𝑃). IoU can be expressed as follows: 

𝐼𝑜𝑈 =
𝐵𝑃∩𝐵𝑇

𝐵𝑃∪𝐵𝑇
 (10) 

Average Precision (AP) is defined as the area under the precision-recall curve, as illustrated below: 

𝐴𝑃 = ∫ 𝑃(𝑅) ∙ 𝑑(𝑅)
1

0
 (11) 

All mAP results presented in this study correspond to the mean AP across categories, calculated at an 

IoU threshold of 0.5. 

3.8. Implementation Details 

The experiments were conducted using four Nvidia 4070Ti-Super GPUs with PyTorch version 2.10.0 

in an Ubuntu 20.04 environment. Training was performed over 72 epochs using the Adam-W optimizer 

with a weight decay of 10-6. The input resolution was set to 8002 for the DIOR20 dataset and 12002 for the 

NWPU10 dataset. The training batch size was 32, and the initial learning rate, regulated by a cosine decay 

schedule, was set to 0.00005. The reported results represent the best outcomes from three independent 

trials. 

4. Experimental Results 

We compared the performance of the proposed QACL-Net with 31 studies published since 2022. 

However, many of these studies did not demonstrate competitive performance. To conserve space, we 

have included performance comparison data for only the 13 highest-ranked methods in the literature. 

Additionally, many of the compared methods reported their performance on either the NWPU10 or 

DIOR20 dataset separately. Therefore, the total number of compared methods on each dataset is slightly 

less than 13. 

Tables 2 and 3 present the mAP comparison results for the NWPU10 and DIOR20 datasets, 

respectively. In these tables, the "roadmap" column lists various detection frameworks, and the symbol "–" 

indicates instances where the relevant literature does not disclose data. Values in bold represent superior 

performance within a given column. 
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4.1. Accuracy Result on NWPU10 

Table 2. Comparison of mAP (%) and AP (%) per Category on NWPU10  

Method Roadmap mAP C01 C02 C03 C04 C05 C06 C07 C08 C09 C10 

MFICDet [11] 

YOLO 

96.4 99.9 95.7 69.8 99.3 93.3 76.0 97.9 84.2 90.2 97.7 

Sw-LBPN [12] 93.8 99.5 95.2 95.2 97.8 92.1 96.4 99.5 93.6 82.9 85.9 

TBNet [34] 95.4 87.5 43.3 100.0 86.6 100.0 92.1 95.9 99.7 85.2 92.0 

HA-MHGEN [14] 

Faster R-CNN 

93.4 97.2 88.9 98.7 83.1 94.2 99.0 90.5 87.6 97.7 97.1 

ABNet [24] 92.3 92.5 97.7 97.7 99.2 95.9 98.8 94.2 69.0 96.6 94.2 

GLNet [38] 91.8 100.0 84.4 98.5 81.6 88.2 100.0 97.2 88.4 90.9 88.7 

MSNet [43] 
Self-designed 

Framework 
96.0 100.0 88.9 96.9 99.9 96.8 98.2 97.6 97.1 88.7 95.8 

CGDDT-Net [28] 
Faster R-CNN 

With Tailored-DA 
93.2 88.2 91.1 90.5 89.2 91.9 91.1 91.4 94.0 93.2 88.2 

QACL-Net-B0 
Ours 

94.2 99.7 83.4 99.6 97.9 93.2 89.2 97.6 74.3 58.3 85.1 

QACL-Net-B3 95.1 99.0 90.4 100.0 98.7 96.6 97.1 100.0 84.7 78.4 92.5 

*C01 to C10 represent the categories: airplane, ship, storage tank, baseball diamond, tennis court, basketball court, ground  

track field, harbor, bridge, and vehicle, respectively. 

Table 2 presents a comparison of the mAP and AP results per category for various methods 

evaluated on the NWPU10 dataset. Among the methods, MFICDet achieves the highest mAP of 96.4%, 

excelling particularly in categories such as airplane (99.9%), ship (95.7%), and vehicle (97.7%). 

Notably, MFICDet, MSNet, and TBNet were trained using a training ratio significantly exceeding 

60%, which, combined with a testing ratio of less than 25%, leads to performance saturation due to the 

limited size of the NWPU10 dataset. As a result, these models, while achieving high mAP values, are 

more susceptible to overfitting due to the sparse number of testing samples. In contrast, the proposed 

QACL-Net-B0 and QACL-Net-B3 models were trained with a more balanced training-to-testing ratio of 

50%, which includes a larger proportion of testing samples and mitigates the risk of overfitting.  

As a result, QACL-Nets demonstrate a more robust and competitive performance across categories, 

achieving an mAP of 94.2% for QACL-Net-B0 and 95.1% for QACL-Net-B3, with consistent and strong 

results in categories such as airplane (99.7%) and storage tank (100%). These results highlight the 

effectiveness of the QACL-Nets in handling the challenges posed by the small-scale nature of the 

NWPU10 dataset, ensuring improved generalization without overfitting.  

4.2. Accuracy Result on DIOR20 

Table 3 compares the performance of various models on the DIOR20 dataset. QACL-Net-B0 achieves 

an mAP value of 75.2%, while QACL-Net-B3 surpasses it with an mAP of 77.6%, significantly 

outperforming all the other models like MFICDet (72.0%) and TBNet (73.6%). 

QACL-Net-B0 and QACL-Net-B3 demonstrate strong category-specific performance, particularly in 

categories like C11 (tennis court), C14 (expressway service area), and C16 (airplane), where both models 

maintain competitive accuracy. For instance, QACL-Net-B3 delivers excellent results in C14 (expressway 

service area) with 91.3% AP and C19 (windmill) with 89.5% AP, outperforming other models such as Sw-

LBPN (90.0% in C14) and SIFA-Net (72.9% in C19). Additionally, QACL-Net-B0 and QACL-Net-B3 show 

superior robustness in categories such as C09 (airplane) and C10 (ground track field), where they achieve 

solid AP scores of 84.8% and 85.3%, respectively. Despite their strong performance, QACL-Nets face some 

challenges in categories like C03 (vehicle) and C08 (harbor), where other models like MSNet and TSPGC 

demonstrate better performance, particularly due to optimization strategies for certain specialized objects. 

Overall, QACL-Net-B3 delivers the most balanced performance across all categories, proving to be highly 

effective for remote sensing image detection tasks.  

The results from Table 3 indicate that QACL-Nets significantly improve detection accuracy compared 

to existing methods. They maintain competitive performance across diverse categories in the DIOR20 

dataset, particularly excelling in handling challenging tasks involving various samples. 

Table 3. Comparison of mAP (%) and AP (%) per Category on DIOR20 

Method Roadmap mAP C01 C02 C03 C04 C05 C06 C07 C08 C09 C10 

MFICDet [11] YOLO 72.0 54.1 71.4 63.3 81.0 42.6 72.5 57.5 68.7 62.1 73.1 
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Sw-LBPN [12] 73.9 82.8 84.9 75.0 89.8 47.8 78.0 69.0 68.9 65.5 81.5 

SIFA-Net [22] 75.4 90.1 76.8 92.8 83.5 45.9 90.3 65.6 66.8 59.9 76.8 

TBNet [34] 73.6 64.9 86.8 76.6 89.2 50.6 80.0 74.3 86.4 74.7 82.5 

HA-MHGEN [14] 

Faster R-CNN 

74.7 88.9 77.1 52.3 81.5 87.2 78.1 89.5 92.1 72.2 71.4 

MSA R-CNN [21] 74.3 92.9 73.8 93.2 87.3 43.0 90.6 58.9 69.2 58.0 83.3 

Bayes R-CNN [23] 74.6 93.6 73.5 93.5 87.4 47.2 89.9 59.0 68.1 59.2 83.2 

ABNet [24] 72.8 66.8 85.0 74.9 87.7 50.3 78.2 67.8 85.9 74.2 79.7 

GLNet [38] 70.7 62.9 83.2 75.3 72.0 50.5 67.4 79.3 51.8 62.6 43.4 

GCF-Net [41] 73.3 62.8 86.5 74.8 89.2 49.2 76.6 72.5 85.7 75.1 81.3 

MSNet [43] 
Self-designed 

Framework 
75.3 95.3 67.4 91.0 90.2 44.6 82.6 49.2 78.4 64.8 73.4 

TSPGC [29] 
Faster R-CNN 

With Tailored-DA 
76.3 - - - - - - - - - - 

QACL-Net-B0 
Ours 

75.2 82.2 71.8 53.3 67.1 79.1 69.9 76.1 52.9 74.1 84.8 

QACL-Net-B3 77.6 85.2 78.9 55.2 71.9 82.0 69.4 77.0 58.7 79.9 85.3 

Method Roadmap mAP C11 C12 C13 C14 C15 C16 C17 C18 C19 C20 

MFICDet [11] 

YOLO 

72.0 76.5 42.8 56.0 71.8 57.0 63.5 81.2 53.0 43.1 80.9 

Sw-LBPN [12] 73.9 78.6 62.8 61.5 90.0 74.8 75.9 87.3 67.1 56.9 79.2 

SIFA-Net [22] 75.4 80.9 57.6 65.2 79.5 91.1 81.9 89.8 62.7 72.9 78.0 

TBNet [34] 73.6 83.6 56.4 64.9 79.1 77.8 58.1 88.2 69.4 44.6 87.0 

HA-MHGEN [14] 

Faster R-CNN 

74.7 85.2 74.2 75.3 71.2 46.9 86.8 69.2 52.5 71.9 71.0 

MSA R-CNN [21] 74.3 84.2 57.3 62.4 68.8 91.8 81.3 90.9 53.7 72.2 74.5 

Bayes R-CNN [23] 74.6 83.9 57.6 62.2 68.4 92.4 81.5 90.7 55.8 71.5 73.4 

ABNet [24] 72.8 81.2 55.4 61.6 75.1 74.0 66.7 87.0 62.2 53.6 89.1 

GLNet [38] 70.7 83.0 86.2 70.9 81.1 72.0 53.7 81.3 65.5 81.8 89.2 

GCF-Net [41] 73.3 83.8 60.2 62.7 72.7 77.3 61.9 88.0 69.9 47.0 89.7 

MSNet [43] 
Self-designed 

Framework 
75.3 85.1 66.4 61.8 94.4 90.4 84.5 94.8 48.1 58.9 85.4 

TSPGC [29] 
Faster R-CNN 

With Tailored-DA 
76.3 - - - - - - - - - - 

QACL-Net-B0 
Ours 

75.2 89.8 72.2 89.4 90.3 83.4 88.4 81.5 48.6 88.9 60.3 

QACL-Net-B3 77.6 91.0 73.4 90.4 91.3 84.3 91.2 81.2 52.1 89.5 63.4 

*C01 to C20 represent the categories: golf field, expressway toll station, vehicle, train station, chimney, storage tank, 

ship, harbor, airplane, ground track field, tennis court, dam, basketball court, expressway service area, stadium,  

airport, baseball field, bridge, windmill, and overpass, respectively. 

4.3. Ablation Experiments 

In this section, we present three sets of ablation experiments conducted to evaluate the performance 

of the proposed QACL-Net. The results of these experiments are displayed in Tables 4, 5, and 6, 

respectively. 

4.3.1. Ablation Experiments on the Proposed Modules 

Table 4 presents a comparison of mAP results for QACL-Net-B3, illustrating the impact of 

sequentially embedding the QA, EQM, and CL modules into the Faster R-CNN framework. The Faster R-

CNN-R50-FPN is the baseline model, representing a standard Faster R-CNN detector with a ResNet50 

backbone. Increases in mAP compared to this baseline are highlighted in blue. 

Table 4. Impact of Modules on mAP (%) Performance of QACL-Net-B3 

Model QA module EQM module CL module DIOR20 

Faster R-CNN-R50-FPN (Baseline)    57.8 

QACL-Net-B3 (Ours) 

   68.4↑10.6 

✓   73.3↑15.5 

✓ ✓  75.6↑17.8 

✓ ✓ ✓ 77.6↑19.8 

Table 4 presents the performance of QACL-Net-B3 on the DIOR20 dataset, highlighting the impact of 

the QA, EQM, and CL modules on mAP. The baseline model, which does not incorporate any of these 

modules, achieves an mAP of 57.8%. The QACL-Net-B3 model, which does not incorporate any of these 

modules, achieves an mAP of 68.4%. When the QA module is activated, the mAP increases to 73.3%, 

representing an improvement of 15.5%. Further enhancements are observed when both the QA and EQM 
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modules are employed, resulting in an mAP of 75.6%, which marks a 17.8% increase. Finally, activating all 

three modules—QA, EQM, and CL—led to the highest mAP of 77.6%, indicating an overall improvement 

of 19.8% over the baseline. These results clearly demonstrate the substantial contributions of each module 

to the performance of QACL-Net-B3, emphasizing the effectiveness of the integrated framework. 

4.3.2. Ablation Experiments on DA Techniques  

In Table 5, we present an ablation study that evaluates the effect of classic DA techniques on the 

performance of the QACL-Net-B3 detector when tested on the NWPU10 dataset. This study investigates 

how the model’s performance degrades when different DA methods are consistently applied during 

training, while the remaining DA techniques follow the settings as we have proposed. Specifically, T01 to 

T06 correspond to the following augmentation strategies: color jitter (T01), horizontal flip (T02), vertical 

flip (T03), grayscale conversion (T04), auto contrast (T05), and Gaussian blur (T06). 

Table 5. Impact of DA techniques on mAP (%) Performance of QACL-Net-B3 

Model 
Ablation Components NWPU10 

T01 T02 T03 T04 T05 T06 mAP(%) 

QACL-Net-B3 (Baseline) - - - - - - 95.1 

QACL-Net-B3 

(Training by Classic DA Techniques) 

✓ - - - - - 94.6 ↓0.5 

- ✓ - - - - 94.6 ↓0.5 

- - ✓ - - - 93.9 ↓1.2 

- - - ✓ - - 81.5 ↓13.6 

- - - - ✓ - 94.8 ↓0.3 

- - - - - ✓ 94.8 ↓0.2 

As shown in Table 5, training with classic data augmentation (DA) techniques results in significant 

performance degradation across most configurations. For instance, applying color jitter (T01) or horizontal 

flip (T02) individually leads to a decrease of 0.5%, yielding a mean Average Precision (mAP) of 94.6%. 

Similarly, the application of vertical flip (T03) results in a more noticeable drop of 1.2%, with an mAP of 

93.9%. More substantial performance degradation occurs with grayscale conversion (T04), where the 

model's mAP sharply declines by 13.6% to 81.5%. In contrast, using auto contrast (T05) or Gaussian blur 

(T06) results in minimal changes, with mAP values of 94.8%, showing slight decreases of 0.3% and 0.2%, 

respectively. 

Overall, these results highlight that current DA techniques lead to substantial performance losses, 

emphasizing the effectiveness of the proposed DA strategies for training the QACL-Net. 

4.3.3. Ablation Experiments on Mosaic Techniques 

Table 6 presents an analysis of the impact of varying EQM and classic Mosaic probabilities on the 

mAP performance of the QACL-Net-B3 model on the NWPU10 dataset. Specifically, we kept the classic 

Mosaic technique consistently active to analyze its impact on existing methods. 

Table 6. Impact of DA techniques on mAP (%) Performance of QACL-Net-B3 

Model 
EQM Probability  Classic Mosaic Probability  NWPU10 

0.1 0.3 0.5 0.8 1.0 mAP(%) 

QACL-Net-B3 

✓     95.1 

 ✓    95.0↓0.1 

  ✓   94.6↓0.5 

   ✓  92.9↓2.2 

    ✓ 84.7↓10.4 

As shown in Table 6, the proposed QACL-Net-B3 achieves an mAP of 95.1% when the EQM 

probability is set to 0.1. The model's performance remains nearly unchanged with an mAP of 95.0%, 

indicating a minimal decline of 0.1% when the EQM probability is increased to 0.3. However, as the EQM 

probability continues to rise, a more significant performance drop is observed. For instance, setting the 

EQM probability to 0.5 results in an mAP decrease to 94.6%, reflecting a reduction of 0.5%. Further 

increases in the probability to 0.8 lead to a more noticeable drop to 92.9%, a decline of 2.2%. In contrast, 

when the classic Mosaic probability is set to 1.0, the model experiences a substantial decrease to 84.7%, a 

reduction of 10.4%. These results indicate that while a lower EQM probability has minimal impact on 

model performance, higher probabilities—particularly for the classic Mosaic technique—lead to 

significant degradation in mAP. 
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4.4. Evaluation of Inference Efficiency 

Table 7 presents the inference speeds and parameters of the QACL-Net-B0 and QACL-Net-B3 

detectors. The experiments were conducted on a single NVIDIA 4070 Ti GPU using an image resolution of 

640 × 640 pixels. For a more intuitive comparison, the Faster R-CNN model with a ResNet50-FPN 

backbone was utilized as the baseline.  

Table 7. Comparison of Inference Speeds and Parameters for QACL-Net  

Method Backbone Parameters (M) FLOPs (G) Frames Per Second (FPS) 

Faster R-CNN-R50-FPN (Baseline) ResNet-50 41.8 91.2 73 

QACL-Net-B0 (Ours) EfficientNet-B0 21.2 58.2 116 

QACL-Net-B3 (Ours) EfficientNet-B3 27.9 63.3 85 

Notably, QACL-Net-B3, which employs the EfficientNet-B3 backbone, demonstrates a parameter 

count of 27.9 million and a FLOPs value of 63.3 billion, resulting in an inference speed of 85 frames per 

second (FPS). In contrast, the Faster R-CNN baseline, with a significantly higher parameter count of 41.8 

million and FLOPs of 91.2 billion, achieves an inference speed of 73 FPS, indicating that QACL-Net-B3 is 

not only more efficient in terms of parameters but also offers a superior FPS rate than the baseline. 

Moreover, QACL-Net-B0 outperforms QACL-Net-B3 in terms of inference speed, reaching 116 FPS with 

only 21.2 million parameters and 58.2 billion FLOPs. This suggests that while QACL-Net-B3 provides a 

balanced trade-off between accuracy and computational efficiency, QACL-Net-B0 excels in speed with a 

smaller model size. Overall, the performance of QACL-Net highlights its competitive advantage in 

resource efficiency relative to traditional architectures while maintaining a robust inference speed.    

4.5. Visualization and Analysis 

4.5.1. Object Detection Results Visualization 

The detection results presented in Figure 7 reveal that QACL-Net-B3 demonstrates a robust 

capability to accurately detect various objects in diverse RSIs. Notably, the model excels in identifying 

small targets, such as vehicles, which are often challenging to detect due to their size and the complexity 

of the surrounding environment. However, the model still makes an incorrect detection for the dam's 

gates, as illustrated in the bottom right corner of Figure 7, where these structures are misclassified as ships 

due to their highly similar appearances. Despite this limitation, QACL-Net-B3 consistently showcases its 

ability to discern and localize objects with various shapes. 

 
Figure 7. Visualization of Detection Results for QACL-Net-B3 Across Different Objects 

4.5.2. Class Activation Mapping for Visual Interpretability 

Figure 8 illustrates the class activation mappings (CAMs) for the same RSI samples depicted in 

Figure 7, utilizing the gradient-weighted class activation mapping (Grad-CAM) technique.    
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Figure 8. Visualizing Class Activation Mapping on Representative RSI Samples 

The data shown in Figure 8 indicates that the CAMs produced by QACL-Net-B3 are significantly 

influenced by the features of the ground scenes. For example, the upper three subplots highlight extensive 

bright areas that correspond to important information about concrete surfaces, which are critical for the 

detector's predictions. Conversely, in scenes where objects are situated within water bodies—illustrated in 

the two lower right subplots—the model's activation areas are predominantly focused around the water. 

Additionally, when scenes contain multiple objects of similar sizes, such as the tennis court and chimneys 

featured in Figure 8, the bright activation areas become more scattered across the background. Overall, 

these findings suggest that the detector's CAMs are closely aligned with the semantic content of the 

ground scenes, emphasizing the benefits of multi-scale feature fusion in enhancing detection performance.  

5. Conclusion 

Recent advancements in object detection models have largely overlooked key characteristics of RSIs, 

leading to various suboptimal approaches that fail to strike an effective balance between model accuracy 

and computational efficiency. To the authors’ knowledge, the inherent scarcity and complexity of RSI 

samples are central to these limitations, suggesting that modifying the model architecture alone cannot 

fully address the issue.  

To address these challenges, we propose QACL-Net, an object detection framework built upon the 

Faster R-CNN architecture. This approach significantly enhances the performance of CNN-based 

detectors for RSI recognition while maintaining fast inference speeds. QACL-Net incorporates several 

novel techniques. First, we introduce the QA strategy to alleviate the issue of RSI sample scarcity. Second, 

we propose the EQM algorithm to improve the classic mosaic technique, which has proven less effective 

for RSI detection. Third, we introduce the CL strategy to resolve the problem of redundant feature fusion 

in the FPN, an issue that has often been overlooked in prior studies. Finally, we develop two variants of 

QACL-Net, each utilizing a different EfficientNet backbone—EfficientNet-B0 and EfficientNet-B3—for the 

detector architecture. 

Extensive experiments on two widely used RSI datasets show that QACL-Net has outperformed 31 

methods since 2022 on the DIOR20 dataset. Specifically, QACL-Net-B3 achieves a 6.9% improvement in 

accuracy on the challenging DIOR20 dataset, significantly surpassing other top-performing models. 

Additionally, QACL-Net reduces model size by 33% and increases inference speed by 17% compared to 

the baseline model. In summary, our work highlights the significant impact of RSI sample scarcity and 

feature fusion redundancy on object detection performance. As a promising solution, we propose QACL-

Net, which effectively balances accuracy and computational efficiency. Theoretically, our approach can be 

seamlessly integrated with other detection models, as the QA, EQM, and CL modules require only 

minimal modifications to the FPN structure. 
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Despite these encouraging results, QACL-Net remains a preliminary solution and may not fully 

capture the diversity of real-world RSI scenarios. Future work could explore more effective strategies for 

feature fusion, extend evaluation to a wider range of RSI datasets, and investigate the integration of our 

method with other backbone architectures.  

An important direction for future research involves extending our approach to one-stage detection 

frameworks, such as YOLO models, to investigate whether the proposed method can maintain its efficacy 

in real-time detection scenarios. This extension will be critical in advancing QACL-Net toward more 

practical and scalable solutions for RSI detection. 
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